UNIVERSITY OF SWAZILAND

Final Examination 2005

Title of Paper

Numerical Analysis II

Program

BSc./B.Ed./B.A.S.S. IV

Course Number

M 411

Time Allowed

Three (3) Hours

Instructions

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements:

NONE

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

- (a) Determine the straight line that best fits the following data in the least squares sense: (0,1), (2,4), (5,8) and (7,13). [10 marks]
- (b) Implement the Gram-Schmidt procedure without the normalization step so as to generate an orthogonal (NOT orthonormal) set of polynomials $\phi_0 \equiv 1$, $\phi_1(x)$, $\phi_2(x)$ on [0,1] using the weight function $w(x) = \ln x$.

Hint:
$$\int_0^1 x^n \ln(x) dx = \left[\frac{-1}{(n+1)^2} \right], n \ge 0.$$
 [10 marks]

Question 2

(a) Assuming real $\lambda < 0$, find the interval of absolute stability for the methods

$$y_{k+2} = y_{k+1} + \frac{h}{2} [3f_{k+1} - f_k]$$

and hence conclude whether it is A-stable.

[10 marks]

(b) Find values of a, b and c so as to ensure that the LMM

$$y_{k+3} = y_{k+2} + ahf_{k+2} + bhf_{k+1} + chf_k$$

is order 2.

[10 marks]

Question 3

(a) Convert the initial value problem

$$y'' - 2y + y = xe^x - x$$
 $y(0) = y'(0) = 0$,

whose true solution is $y(x) = \frac{1}{6}x^3e^x - xe^x + 2e^x - x - 2$, to a first-order system u' = f(x, u). [8 marks]

(b) Apply the modified Euler method

$$y_{n+1} = y_n + \frac{h}{2} \left\{ f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1}) \right\},$$

$$\overline{y}_{n+1} = y_n + h f(x_n, y_n)$$

to the system obtained in (a) with h = 0.1 to obtain an approximation to $\mathbf{u}(0.1)$. [12 marks]

Question 4

(a) Taking $h = \frac{1}{3}$, use the finite difference method to approximate the solution of the two-point b.v.p.

$$y'' = 4(y - x),$$
 $0 \le x \le 1,$ $y(0) = 0,$ $y(1) = 2.$

[10 marks]

(b) Discuss consistency, zero stability and convergence of the linear multistep method

$$y_{n+2} = y_{n-2} + \frac{4h}{3} \left\{ 2f_{n+1} - f_n + 2f_{n-1} \right\}.$$

[10 marks]

Question 5

Consider the standard initial value problem y' = f(x, y), $y(0) = y_0$. We would like to construct a numerical method from the quadratic interpolant $P_2(x)$, of f at the equally spaced nodes x_{n-1} , x_n and x_{n+1} .

(a) Write down the Newton form of P_2 in forward difference form.

[5 marks]

(b) By integrating between x_n and x_{n+1} , derive the implicit method

$$y_{n+1} = y_{n-1} + \frac{h}{3} \left\{ f_{n-1} + 4f_n + f_{n+1} \right\}$$

[7 marks]

(c) Prove that this method is order 4, and find the leading term in the local truncation error.

[8 marks]

Question 6

Consider the following partial differential equation:

$$\begin{array}{rcl} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} & = & 0, & 0 \leq x \leq 1, & t > 0; \\ u(0,t) & = & 0, & u(1,t) = 0, & t > 0, \\ u(x,0) & = & \sin \pi x, & 0 \leq x \leq 1, \\ \frac{\partial u}{\partial t}(x,0) & = & 0, & 0 \leq x \leq 1 \end{array}$$

By using the finite-difference method with h=k=1/3, approximate the solution at t=2/3 of the PDE, comparing your results with the actual solution of $u(x,t)=\cos \pi t \sin \pi x$ at t=2/3. Assume the differential equation holds on the initial line, and use a second order Taylor series approximation to find an approximation to the solution at t=1/3.

[20 marks]

Question 7

(a) The following elliptic differential equation is for heat distribution on a rectangular plate $\{(x,y): 0 \le x \le 1, 0 \le y \le 2\}$:

$$u_{xx} + u_{yy} = 0$$

 $u(x,0) = 0, \quad u(x,2) = 0$
 $u(0,y) = 0, \quad u(1,y) = 50$

(i) Using h = k = 1/2, translate the problem into a corresponding difference problem based on the five-point formula, stating the boundary conditions in terms of the mesh points.

[5 marks]

(ii) Determine the system of equations to be used to solve the problem. (DO NOT SOLVE)

[5 marks]

7. (b) Consider the parabolic differential equation

$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 \le x \le 1, \quad t > 0$$

$$u(0,t) = 0, \quad u(1,t) = 0, \quad t > 0$$

$$u(x,0) = \cos 2\pi x, \quad 0 \le x \le 1$$

(i) If an $O(k^2+h^2)$ numerical method is constructed using the central difference quotient to approximate u_t and the usual difference quotient to approximate u_{xx} , show that the resulting difference problem is

$$u_{i,j-1} = u_{i,j-1} + 2\lambda(u_{i+1,j} - 2u_{ij} + u_{i-1j}).$$

defining λ appropriately.

[4 marks]

- (ii) Give a sketch of the configuration of points involved in the computation of the solution at the internal grid point (x_i, t_j) . [2 marks]
 - (iii) Show that the method has the matrix form

$$\mathbf{u}^{(j+1)} = \mathbf{u}^{(j-1)} + A\mathbf{u}^{(j)}$$
 for each $j = 0, 1, 2, \cdots$

where $\mathbf{u}^{(j)} = (u_{1,j}, u_{2,j}, \dots, u_{m-1,j})^T$ and A is a tridiagonal matrix.

[4 marks]

****** END OF EXAMINATION ******