UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2005

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER

: DYNAMICS II

COURSE NUMBER

M 355

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. (a) Show that the function y(x) which renders the functional

$$I = \int_{x_0}^{x_1} F(x,y,y') dx$$

stationary, satisfies the Euler - Lagrange equation given by

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$

where y' = dy/dx

[6 marks]

(b) Find the curves y(x) that minimize the following functionals subject to the given boundary conditions,

i.

$$I = \int_0^{\frac{\pi}{2}} (y^2 - (y')^2 - 2y\sin x) dx$$

with boundary conditions y(0) = 1 and $y\left(\frac{\pi}{2}\right) = 2$.

[7 marks]

ii.

$$\int_0^1 \left(\frac{1}{2}y'^2 + yy' + y' + y\right) dx$$

with boundary conditions $y(0) = \frac{1}{2}$, y(1) is free

[7 marks]

2. (a) Show that if f is a function of p_{α} , q_{α} and t and H is the Hamiltonian, then

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + [f, H]$$

[6 marks]

(b) The Hamiltonian of a two-dimensional harmonic oscillator of unit mass is given by

$$H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{2}\omega^2(q_1^2 + q_2^2)$$

where ω is a constant. Given that

$$A = q_1p_2 - q_2p_1$$
 and $B = \omega q_1 \sin \omega t + p_1 \cos \omega t$

Show that both A and B are constants of motion.

[8 marks]

(c) By the method of Poisson brackets, show that the transformation, given by

$$\begin{array}{lll} q_1 & = & \sqrt{2P_1} \sin Q_1 + P_2, & & p_1 = \frac{1}{2} \left(\sqrt{2P_1} \cos Q_1 - Q_2 \right) \\ \\ q_2 & = & \sqrt{2P_1} \cos Q_1 + Q_2, & & p_2 = -\frac{1}{2} \left(\sqrt{2P_1} \sin Q_1 - P_2 \right) \end{array}$$

is canonical.

[6 marks]

3. A simple pendulum of mass m_2 is attached to a mass m_1 which can move freely along the horizontal line, as shown in the Figure below. The system is in a uniform gravitational field (acceleration g).

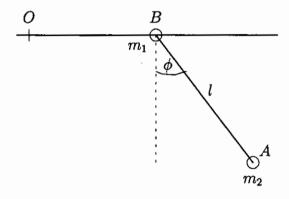


Figure 1:

Choosing the generalised coordinates to be x, the distance moved by m_1 from O, and ϕ , the inclination of BA to the vertical,

(a) Write down the transformation equation.

[4 marks]

(b) Derive the Lagrangian function of the system.

[6 marks]

(c) Prove that the Lagrange's equation of motion corresponding to the generalized coordinate ϕ is

$$l\ddot{\phi} + \ddot{x}\cos\phi + g\sin\phi = 0$$

[5 marks]

(d) Write down the Lagrange's equation of motion corresponding to x. [5 marks]

5. (a) Given that the transformation equations for a mechanical system are given by $\mathbf{r}_{\nu} = \mathbf{r}_{\nu}(q_1, q_2, \dots, q_n)$, where q_{α} are generalized coordinates. Prove that,

(i) $\frac{\partial \dot{\mathbf{r}}_{\nu}}{\partial \dot{q}_{\alpha}} = \frac{\partial \mathbf{r}_{\nu}}{\partial q_{\alpha}}$

(ii) $\sum_{\alpha=1}^{n} \dot{q}_{\alpha} \frac{\partial T}{\partial \dot{q}_{\alpha}} = 2T$

where T is the kinetic energy.

[4, 4 marks]

(b) The Lagrangian for a certain dynamical system is given by

 $L = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2 + t^2 - 2\dot{r}t\cos\theta + 2rt\dot{\theta}\sin\theta) - mg\left(\frac{1}{2}t^2 - r\cos\theta\right) - \frac{k}{2}(r-a)^2$

where r, θ are generalized coordinates, t is time and m, g and k are constants. Using the Lagrangian method, show that the equations of motion for the system are given by

 $\ddot{r} - r\dot{\theta}^2 = (g+1)\cos\theta - \frac{k}{m}(r-a)$ $\ddot{\theta} + 2\frac{\dot{r}\dot{\theta}}{r} + \frac{g+1}{r}\sin\theta = 0$

[12 marks]

6. Use the following definition

Ž

$$[F,G] = \sum_{\alpha} \left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}} \right)$$

of a Poisson bracket between two physical quantities $F(q_{\alpha}, p_{\alpha}, t)$ and $G(q_{\alpha}, p_{\alpha}, t)$ to prove the following properties.

(a)
$$[u, v] = -[v, u]$$
 [3 marks]

(b)
$$[u, u] = 0$$
 [2 marks]

(c)
$$[u, v + w] = [u, v] + [u, w]$$
 [3 marks]

(d)
$$[u, vw] = v[u, w] + [u, v]w$$
 [3 marks]

(e)
$$[q_{\alpha}, p_{\beta}] = \delta_{\alpha\beta}$$
 [3 marks]

(f)
$$\dot{q}_{\alpha} = [q_{\alpha}, H]$$
 [3 marks]

(g)
$$\dot{p}_{\alpha} = [p_{\alpha}, H]$$
 [3 marks]

where q_{α} are generalized coordinates, p_{α} are generalized momenta, H is the Hamiltonian function and $\delta_{\alpha\beta}$ is the kronecker delta.

7. Use the Beltrami identity $(F - y' \frac{\partial F}{\partial y'} = \text{Constant})$ to show that the extremum for the integral

$$I = \int_0^a \sqrt{\frac{1 + y'^2}{2y}} dx$$

satisfies the differential equation

$$y' = \sqrt{\frac{2c - y}{y}}.$$

By making the substitution $y=2c\sin^2\theta$, show that the solution of the differential equation is $x=c(2\theta-\sin2\theta)$ [20 marks]