Department of Mathematics

Supplementary Examination 2005

M331 REAL ANALYSIS

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Throughout this paper the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ stand for the natural numbers, the integers, the rational numbers and the real numbers respectively.

- **Question 1.** Let A be a subset of the real numbers.
 - (a) [10 marks] What is meant by saying that A is bounded?

Which of the following sets is bounded? Give reasons for your answers.

(i)
$$\{q^4: q \in \mathbb{Q} \text{ and } q^2 < 2\}$$

(ii)
$$\left\{ \frac{3n^2+2}{n^2-2} : n \in \mathbb{N} \right\}$$

(iii)
$$\{n^{-1}: n \in \mathbb{Z} \text{ and } n \neq 0\}$$

(b) [6 marks] What is meant by $\inf A$ for a set A that is bounded below?

Which of the sets in (a) is bounded below? Find $\inf A$ for each set that is bounded below.

- (c) [4 marks] Which of the following statements is always true? Give a proof for those that are true and a counterexample for those that are false.
- (i) if A is bounded below then $\mathbb{R} \setminus A$ is not bounded below (where $\mathbb{R} \setminus A = \{x \in \mathbb{R} : x \notin A\}$);
 - (ii) if A is bounded then the set $-A = \{-x : x \in A\}$ is bounded.
- **Question 2.** (a) [8 marks] Let (a_n) be a sequence of real numbers and $l \in \mathbb{R}$. Give a precise definition of the statement that

$$\lim_{n\to\infty}a_n=l$$

Show directly from the definition that

$$\lim_{n\to\infty} \frac{(2+\sqrt{n})^2}{4+n} = 1.$$

(b) [12 marks] Which of the following sequences (a_n) is convergent? For those that are, find the limit. State clearly any facts about limits that you use.

(i)
$$a_n = \frac{5n^3 - n + 2}{13n^2 - n}$$

(ii)
$$a_n = \frac{n + 2n^2 - 2n^3}{n^3 - 9n}$$

(iii)
$$a_n = \sqrt{n^2 - \frac{2}{n^2}}$$

(iv)
$$a_n = \sqrt{n^2 + 1} - n$$

CONT ...

- Question 3. (a) [4 marks] Let (a_n) be a sequence. (i) Define what is meant by the partial sums of the series $\sum a_n$ (ii) What is meant by saying that $\sum_{n=1}^{\infty} a_n = s$
 - (b) [6 marks] Prove carefully that if $\sum_{n=1}^{\infty} a_n = s$ and $\sum_{n=1}^{\infty} b_n = t$ then $\sum_{n=1}^{\infty} (a_n + b_n) = s + t$.
 - (c) [6 marks] Show that each of the following series converges, stating any general theorems that you use.

(i)
$$\sum (-1)^n \frac{1}{\sqrt{n}}$$

(ii)
$$\sum \frac{25^n}{n^n}$$

- (d) [4 marks] Show that if $\sum a_n$ and $\sum b_n$ are both convergent and $a_n \geq 0$ and $b_n \geq 0$ then $\sum a_n b_n$ is convergent.
- Question 4. (a) [6 marks] Find $\lim_{x\to c} f(x)$ for each of the following functions and the given value of c.

(i)
$$f(x) = \begin{cases} \frac{x^4 - 9}{x^2 - 3} & \text{if } x^2 \neq 3 \\ 12 & \text{if } x^2 = 3 \end{cases}$$
 and $c = \sqrt{3}$

(i)
$$f(x) = \begin{cases} \frac{x^4 - 9}{x^2 - 3} & \text{if } x^2 \neq 3 \\ 12 & \text{if } x^2 = 3 \end{cases}$$
 and $c = \sqrt{3}$
(ii) $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ -1 & \text{if } x = 0 \end{cases}$ and $c = 0$

- (b) [7 marks] What is meant by saying that a function f(x) is continuous at a point c. (You may assume that f is defined on an interval (a, b) that contains c.)
- Prove that if f(x) and g(x) are both continuous at c then so is the product f(x)g(x).
- (c) [7 marks] Which of the following functions is continuous at the given point

(i)
$$f(x) = \begin{cases} x \cos \frac{1}{x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
; $c = 0$

- (ii) $f(x) = [x^2]$ (where [z] is the integer part of z that is, the greatest integer $\leq z$); $c = \sqrt{3}$
- (Give reasons for your answers.)

- 3

- **Question 5.** Let $f: [a, b] \to \mathbb{R}$ and let a < c < b.
 - (a) [8 marks] Define what is meant by saying that f is differentiable at the point c. Show carefully that if f and g are differentiable at c then f g is differentiable at c.
 - (b) [6 marks] Prove that if f is differentiable at c and c is a local maximum or local minimum of f, then Df(c) = 0. Give an example to show that the converse is false.
 - (c) [6 marks] State the Mean Value Theorem and use it to show that

$$|\exp y - \exp x| \le e|y - x|$$

for all $x, y \in [0, 1]$, where $e = \exp 1$.

Question 6. (a) [10 marks] Let $f:[a,b] \to \mathbb{R}$ be any function. Define what is meant by saying that f is Riemann integrable using upper and lower sums, and what is meant by the Riemann integral $\int_a^b f(x)dx$.

Explain briefly why f is Riemann integrable if it is continuous.

- (b) [10 marks] By considering the integral $\int_1^n \frac{1}{x^2} dx$ as $n \to \infty$ show that the series $\sum \frac{1}{n^2}$ is convergent. (Do **NOT** simply quote the integral test.)
- Question 7. (a) [10 marks] Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $F(x)=\int_a^x f(t)dt+c$ for $a\leq x\leq b$. Show that F(x) is differentiable in the interval [a,b] with derivative DF(x)=f(x).

(State carefully any properties of the integral that you assume.)

(b) [10 marks] Let $g(x) = \int_0^{x^3} \exp(1 + 2\sin t) dt$. Show that g is differentiable for all x and find its derivative.

(END)