THE UNIVERSITY OF SWAZILAND

116

Department of Mathematics

Final Examination 2005

M331 REAL ANALYSIS

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Throughout this paper the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ stand for the natural numbers, the integers, the rational numbers and the real numbers respectively.

Question 1. Let A be a subset of the real numbers.

bounded below.

(a) [10 marks] What is meant by saying that A is bounded?

Which of the following sets is bounded? Give reasons for your answers.

(i)
$$\{q^{\frac{2}{3}}: q \in \mathbb{Q} \text{ and } q < \sqrt{2}\}$$

(ii)
$$\left\{ \frac{6n^3+2}{n^3-6} : n \in \mathbb{N} \right\}$$

(iii)
$$\{n^{-2}: n \in \mathbb{Z} \text{ and } n \neq 0\}$$

- (b) [6 marks] What is meant by $\inf A$ for a set A that is bounded below? Which of the sets in (a) is bounded below? Find $\inf A$ for each set that is
- (c) [4 marks] Which of the following statements is always true? Give a proof for those that are true and a counterexample for those that are false.
- (i) if A is bounded below then $\mathbb{R} \setminus A$ is bounded above (where $\mathbb{R} \setminus A = \{x \in \mathbb{R} : x \notin A\}$);
- (ii) if A is bounded below then the set $-A = \{-x : x \in A\}$ is bounded above.
- Question 2. (a) [8 marks] Let (a_n) be a sequence of real numbers and $l \in \mathbb{R}$. Give a precise definition of the statement that

$$\lim_{n\to\infty}a_n=l$$

Show directly from the definition that

$$\lim_{n\to\infty} \frac{(1+2\sqrt{n})^2}{1+n} = 4.$$

(b) [12 marks] Which of the following sequences (a_n) is convergent? For those that are, find the limit. State clearly any facts about limits that you use.

(i)
$$a_n = \frac{5n^2 - n + 2}{n - 13n^4}$$

(ii)
$$a_n = \frac{n - n^2 + 2n^3}{5n^3 - 17n}$$

(iii)
$$a_n = \sqrt{2n^2 - \frac{1}{n^2}}$$

(iv)
$$a_n = \sqrt{n+1} - \sqrt{n-1}$$

CONT ...

- **Question 3.** (a) [4 marks] Let (a_n) be a sequence. (i) Define what is meant by the partial sums of the series $\sum a_n$ (ii) What is meant by saying that $\sum_{n=1}^{\infty} a_n = s$
 - (b) [6 marks] Prove carefully that if $\sum_{n=1}^{\infty} a_n = s$ and $\sum_{n=1}^{\infty} b_n = t$ then
 - (c) [6 marks] Show that each of the following series converges, stating any general theorems that you use.
 - (i) $\sum (-1)^n \frac{1}{n}$
 - (ii) $\sum \frac{n!}{n^n}$
 - (d) [4 marks] By considering $a_n = (-1)^n \frac{1}{\sqrt{n}} = b_n$ show that if $\sum a_n$ and $\sum b_n$ are both convergent then it does **not** necessarily follow that $\sum a_n b_n$ is convergent.
- Question 4. (a) [6 marks] Find $\lim_{x\to c} f(x)$ for each of the following functions and the given value of c.
 - (i) $f(x) = \begin{cases} \frac{x^4 16}{x^2 4} & \text{if } x \neq -2, 2 \\ 4 & \text{if } x = -2 \text{ or } x = 2 \end{cases}$ and c = -2(ii) $f(x) = \begin{cases} (x^2 1)\sin\left(\frac{1}{x 1}\right) & \text{if } x \neq 1 \\ -1 & \text{if } x = 1 \end{cases}$ and c = 1

 - (b) [7 marks] What is meant by saying that a function f(x) is continuous at a point c. (You may assume that f is defined on an interval (a, b) that contains c.)
 - Prove that if f(x) is continuous at c and $f(c) \neq 0$ then $\frac{1}{f(x)}$ is continuous at c.
 - (c) [7 marks] Which of the following functions is continuous at the given point

(i)
$$f(x) = \begin{cases} \sqrt{x} \cos \frac{1}{x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
; $c = 0$

- (ii) $f(x) = [\sqrt{x}]$ (where [x] is the integer part of x that is, the greatest integer $\leq x$); c=9
- (Give reasons for your answers.)

Question 5. Let $f : [a, b] \to \mathbb{R}$ and let a < c < b.

- (a) [8 marks] Define what is meant by saying that f is differentiable at the point c. Show carefully that if f and g are differentiable at c then f.g is differentiable at c. (You may assume without proof that if f is differentiable at c then f is continuous at c.)
- (b) [6 marks] Prove that if f is differentiable at c and c is a local maximum or local minimum of f, then Df(c) = 0. Give an example to show that the converse is false.
- (c) [6 marks] State the Mean Value Theorem and use it to show that

$$|\cos^4 x - \cos^4 y| \le 4|x - y|$$

for all $x, y \in \mathbb{R}$.

Question 6. (a) [10 marks] Let $f:[a,b]\to\mathbb{R}$ be any function. Define what is meant by saying that f is Riemann integrable using upper and lower sums, and what is meant by the Riemann integral $\int_a^b f(x)dx$.

Explain briefly why f is Riemann integrable if it is continuous.

- (b) [10 marks] State the integral test for convergence of a series and sketch its proof, stating clearly any property of the Riemann integral that you use.
- **Question 7.** (a) [10 marks] Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $F:[a,b]\to\mathbb{R}$ is differentiable with DF(x)=f(x) for $a\leq x\leq b$. Show that

$$\int_{a}^{x} f(t)dt = F(x) - F(a)$$

for each $x \in [a, b]$. (You may assume that the function $G(x) = \int_a^x f(t)dt$ is differentiable with derivative DG(x) = f(x); state carefully any other properties of derivatives or integrals that you assume.)

(b) [10 marks] Let $g(x) = \int_0^{x^2} \exp(1 + \sin(t^2)) dt$. Show that g is differentiable for all x and find its derivative.

(END)