UNIVERSITY OF SWAZILAND

Final Examination 2005

Title of Paper

Abstract Algebra I

Program

BSc./B.Ed./B.A.S.S. III

Course Number

M 323

Time Allowed

Three (3) Hours

Instructions

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements:

None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

(a) Find the greatest common divisor d of the numbers 52 and 20 and express it in the form d = 52x + 20y for some $x, y \in \mathbb{Z}$.

[5 marks]

(b) Prove that every subgroup of a cyclic group is cyclic.

[10 marks]

- (c) Give an example of a group satisfying the given conditions or if there is no such example, say so. (Do not prove anything)
 - (i) An abelian non-cyclic group.
 - (ii) A non-abelian cyclic group.
 - (iii) A group with no proper subgroups.

[5 marks]

Question 2

(a) Suppose that d, a, b are positive integers, the greatest common divisor of a and d equals one i.e (a, d) = 1 and that d divides ab. Prove that d divides b.

[5 marks]

(b) Determine all possible solutions of

$$3x \equiv 5 \pmod{11},$$

 $x \in \mathbb{Z}$.

[5 marks]

(c) Find the number of elements in the cyclic subgroup (30) of \mathbb{Z}_{42} . (Do not list the elements)

[5 marks]

(d) Show that \mathbb{R} under addition is isomorphic to \mathbb{R}^+ under multiplication.

[5 marks]

2

Question 3

(a) Find all subgroups of \mathbb{Z}_{18} and draw the lattice diagram.

[10 marks]

(b) Let $\varphi: G \to H$ be an isomorphism of G with H and let e be the identity of G. Prove that $(e)\varphi$ is the identity in H and that $(a^{-1})\varphi = [(a)\varphi]^{-1}$.

[10 marks]

Question 4

(a) Prove that a non-abelian group of order 2p, p prime, contains at least one element of order p.

[6 marks]

(b) Consider the following permutations in S_6

$$\rho = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{array}\right) \qquad \qquad \sigma = \left(\begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{array}\right)$$

Compute (i) $\rho\sigma$ (ii) σ^2 (iii) σ^{-1} (iv) σ^{-2} (iv) $\rho\sigma^2$ [10 marks]

(c) Write the permutations in (b) as a product of disjoint cycles in S_6 .

[4 marks]

Question 5

- (a) For each binary operation * defined on a set G, say whether or not * gives a group structure on the set.
 - (i) Define * on $G = \mathbb{Q}^+$ by

$$a*b = \frac{ab}{2} \qquad \forall \ a, b \in \mathbb{Q}^+.$$

[8 marks]

(ii) Define * on $G = \mathbb{R}$ by

$$a*b = ab + a + b \quad \forall a, b \in \mathbb{R}.$$

[8 marks]

(b) Show that \mathbb{Z}_6 and S_3 are NOT isomorphic and that \mathbb{Z} and $3\mathbb{Z}$ are isomorphic. [4 marks]

Question 6

(a) Show that \mathbb{Z}_p has no proper subgroup if p is prime.

[6 marks]

(b) Show that if (a, m) = 1 and (b, m) = 1 then

$$(ab, m) = 1;$$
 $a, b, m \in \mathbb{Z}.$

[6 marks]

(c) Prove that every group of prime order is cyclic.

[8 marks]

4

Question 7

(a) Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ where $a, b, c \in \mathbb{Q}$ and $ac \neq 0$. Show that, with respect to matrix multiplication, G is a group.

[8 marks]

(b) Solve the system

$$3x \equiv 2 \pmod{5}$$
$$2x \equiv 1 \pmod{3},$$

 $x \in \mathbb{Z}$. [8 marks]

(c) Prove the uniqueness of the identity element and the uniqueness of the inverse element for each element of a group G.

[4 marks]

****** END OF EXAMINATION ******