UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2005

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER

: VECTOR ANALYSIS

COURSE NUMBER

: M312

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) A path of a roller coaster ride (superimposed on a rectangular coordinate system) consists of part of the parabola $y = \frac{x^2}{2}$ for $x \le 0$, followed by a circular loop for $x \ge 0$. Find the equation of this loop if the track is *continuous*, *smooth*, and has a *continuous curvature*. [8]
- (b) Parabolic coordinates (u, ν, ϕ) are defined by

$$x = au\nu\cos\phi, \quad y = au\nu\sin\phi, \quad z = \frac{a}{2}(u^2 - \nu^2)$$

where u > 0, $\nu > 0$, $-\pi < \phi < \pi$.

- (i) Find the scale factors and the unit vectors of the coordinate system.
- (ii) Show that the coordinate system is orthogonal.
- (iii) Find the line element. [12]

QUESTION 2

- (a) Show that the vector field $\mathbf{F} = (6xy+z^3)\hat{\mathbf{i}} + (3x^2-z)\hat{\mathbf{j}} + (3xz^2-y)\hat{\mathbf{k}}$ is irrotational. Find a function ϕ such that $\mathbf{F} = \nabla \phi$. [10]
- (b) Let $\mathbf{u}(x,y,z) = y\hat{\mathbf{i}} x\hat{\mathbf{j}}$ and $\mathbf{v}(x,y,z) = \frac{\mathbf{u}}{(x^2 + y^2)^{\frac{1}{2}}}$ be vectors in space.
 - (i) Compute the divergence and the curl of u and v.
 - (ii) Find the flow lines of **u** and **v**. [10]

QUESTION 3

- (a) Find a vector field F(x, y, z) = M(x, y, z)î + N(x, y, z)ĵ + P(x, y, z)k with the property that at each point (x, y, z) F points away from the origin and its magnitude |F| is proportional to the square of the distance from (x, y, z) to the origin.
- (b) Find the unit outward normal vector to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a, b > 0$$

at the point $P\left(\frac{-a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$. [8]

(c) Prove that div curl $\mathbf{F} = 0$, where \mathbf{F} is a twice differentiable function. [6]

QUESTION 4

- (a) Let $\mathbf{F}(x,y) = (2xy y^4 + 3)\hat{\mathbf{i}} + (x^2 4xy^3)\hat{\mathbf{j}}$ be a given vector field.
 - (i) Show that there exists a scalar potential $\phi(x,y)$ such that $\mathbf{F} = \nabla \phi$. Hence prove that the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of the path C.
 - (ii) If C is the straight line from the point (1,0) to the point (2,1), evaluate the integral given in (i). [12]
- (b) Verify that the parametric equations

$$x = \rho^2 \cos \theta$$
, $y = \rho^2 \sin \theta$, $z = \rho$

could be used to represent the surface $x^2 + y^2 - z^4 = 0$. Hence compute the unit normal to this surface at any point. [8]

QUESTION 5

Let S be the surface of the solid Ω enclosed by the paraboloid $z=1-x^2-y^2$ and the plane z=0. Assuming that S is oriented outward, verify the Divergence theorem for the vector field $\mathbf{F}(x,y,z)=x\hat{\mathbf{i}}+y\hat{\mathbf{j}}+z\hat{\mathbf{k}}$ by evaluating both

$$\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \, dS \quad \text{and} \quad \iiint_{\Omega} \operatorname{div} \, \mathbf{F} \, dV.$$

[20]

QUESTION 6

- (a) Evaluate, without using Stoke's theorem, the line integral $\int_C [xzdx ydy + x^2ydz]$, where C is the edge of the base of the tetrahedron formed by x = 0, y = 0, z = 0, 2x + y + 2z = 8, and the base lies on the plane y = 0. [8]
- (b) Use Stoke's theorem to evaluate the line integral given in part (a). Hence verify Stoke's theorem. [12]

QUESTION 7

- (a) Evaluate $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$, where $\mathbf{F}(x, y, z) = -x\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + x\sin(z)\hat{\mathbf{k}}$ and S is the portion of the elliptic cylinder $\mathbf{r}(u, \nu) = 2\cos\nu\hat{\mathbf{i}} + \sin\nu\hat{\mathbf{j}} + u\hat{\mathbf{k}}$ for which $0 \le u \le 5$, $0 \le \nu \le 2\pi$.
- (b) By any method, find the circulation of the field $\mathbf{F} = (x^2 + y^2)\hat{\mathbf{i}} + (x + y)\hat{\mathbf{j}}$ around the triangle with vertices (1,0), (0,1), (-1,0) traversed in the counterclockwise direction.

END OF EXAMINATION