UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2005

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER

: MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

M215

:

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Find the values of b and c for which the vectors [2, -3, 4] and [1, b, c] are parallel.
- (b) Find the values of λ for which the vectors $[\lambda, -2, 1]$ and $[2\lambda, \lambda, -4]$ are perpendicular.
- (c) Confirm that the vectors [3,1,-2], [-1,3,4], and [4,-2,-6] form the sides of a triangle.

QUESTION 2

- (a) Use triple integration to find the volume between the spheres $x^2 + y^2 + z^2 = 16$ and $x^2 + y^2 + z^2 = 9$. [10]
- (b) Use the Gaussian Elimination method or the Gauss-Jordan Elimination method to solve the following system of linear equations

$$2x_1 - 3x_2 + 4x_3 - x_4 = 0$$

$$7x_1 + x_2 - 8x_3 + 9x_4 = 0$$

$$2x_1 + 8x_2 - x_3 - x_4 = 0.$$

[10]

QUESTION 3

(a) Let A and B be two points and \vec{a} , \vec{b} be their position vectors. Show that the position vector \vec{r} of the point R which divides AB in the ration p:q is given by

$$\vec{r} = \frac{q\vec{a} + p\vec{b}}{p + q}.$$

Deduce the mid-point formula.

4

[5]

(b) Evaluate the following limits

(i)
$$\lim_{x\to\infty} \frac{e^{\frac{3}{x}}-1}{\sin(\frac{1}{x})}$$

(ii)
$$\lim_{x\to\infty} x^{\frac{1}{x}}$$

(iii)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)}\right)$$
. [15]

QUESTION 4

- (a) The temperature at a point (x, y) on a metal plate is $T(x, y) = 4x^2 4xy + y^2$. An ant on the plate walks around the circle of radius 5 cm centered at the plate's origin. Use the method of Lagrange Multipliers to find the highest and lowest temperatures encountered by the ant. [10]
- (b) Find the first four nonzero terms of the Taylor series generated by $f(x) = e^x$ about x = 0. Use the series to find an approximation of

$$\int_0^1 e^{-x^2} \mathrm{d}x$$

correct to three decimal places.

[10]

QUESTION 5

- (a) (i) State the Mean Value Theorem.
 - (ii) Show that for the function $f(x) = \frac{4}{x}$ there is no real number c in the interval (-1,4) such that f(4) f(-1) = f'(c)[4 (-1)]. Why does this not contradict the Mean Value Theorem? [8]
- (b) The transformation equations from rectangular coordinates (x, y, z) to cylindrical coordinates (r, θ, z) is given by

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$.

Show that

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)}=r.$$

Use this transformation to evaluate

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (2-2x^2-2y^2) \mathrm{d}z \mathrm{d}y \mathrm{d}x.$$

[12]

QUESTION 6

(a) Let a_{11} , a_{12} , a_{21} and a_{22} be given real numbers such $a_{11}a_{22} - a_{12}a_{21} \neq 0$. Find numbers b_{11} , b_{12} , b_{21} and b_{22} such that

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \left(\begin{array}{cc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

[10]

(b) Solve the linear system

$$3x - 2y + z = 1$$

$$3x + 3x = 3$$

$$x + y - z = 0,$$

using Cramer's rule.

QUESTION 7

(a) Find the value of $\frac{\partial f}{\partial x}$ at the point (4,5) if

$$f(x,y) = x^2 + 3xy + y - 1.$$

[4]

(b) If
$$w = \frac{x^3 + y^3}{x - y}$$
, show that $xw_y + yw_x = \frac{\left(x + y\right)^3}{x - y}$. [10]

(c) Find conditions on a, b and c such that the system

$$ax_1 + bx_2 = c$$

$$bx_1 + ax_2 = c$$

has infinitely many solutions.

•

[6]

END OF EXAMINATION