

University of Swaziland

Supplementary Examination 2004/2005

B.Sc./B.Ed./B.A.S.S. III

Title of Paper

: Calculus I

Course Number

: M 211

Time Allowed

: Three (3) hours

Instructions

:

- 1. This paper consists of seven questions.
- 2. Answer any five questions.
- 3. Your work must be accompanied by appropriate explanations.
- 4. Use of cellular phones during the examination is not allowed.
- 5. Only non-programmable calculators may be used.

Special requirements: None

The examination paper must not be opened until permission has been granted by the Invigilator.

Q1.

- (a) Define the terms relative maximum and relative minimum.
- (b) Find the value of the derivative at each of the given relative extrema of the following functions.

1.
$$f(x) = \frac{9(x^2 - 3)}{x^3}$$
, at $(3, 2)$.

- 2. f(x) = |x|, at (0,0).
- 3. $f(x) = \sin x$, at $(\frac{\pi}{2}, 1)$ and at $(\frac{3\pi}{2}, -1)$.

20 [marks]

Q2.

- (a) Define concavity and state the test for concavity.
- (b) Determine the open intervals on which the graph of $f(x) = 6(x^2 + 3)^{-1}$ is concave upward or downward. 10 [marks]
- (c) State the Second Derivative Test theorem. Apply this theorem to find the relative extrema of the function $f(x) = x^3 3x^2 + 3$.

10 [marks]

Q3.

Evaluate the following limits:

1.
$$Lim_{x\to\infty}\frac{2x-1}{x+1}$$

$$2. Lim_{x_{\overline{n}},\infty} \frac{\sin 2x}{x}$$

3.
$$Lim_{x\to 0^+}(\sin x)^x$$
.

20 [marks]

Q4.

(a) Use the disc or shell method to find the volume of the solid formed by revolving the region bounded by the graphs of the equations about the specified line.

$$y = x^3, y = 0, x = 2,$$

(a) the x- axis, (b) the y- axis, (c) the line x=4, (d) the line y=8.

20 [marks]

Q5.

(a) Find the arc length from (x_1, y_1) to (x_2, y_2) on the graph f(x) = mx + b, where m and b are real constants.

10 [marks]

(b) Find the arc length of the graph $y = \frac{x^3}{6} + \frac{1}{2x}$ on the interval $[\frac{1}{2}, 2]$.

10 [marks]

Q6. Test for convergence or divergence using any appropriate test. Identify the test used.

$$1. \sum_{n=1}^{\infty} \frac{n+1}{3n+1}.$$

2.
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
.

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{4n+1}.$$

20 [marks]

Q.7

(a) Determine whether the series converges conditionally or absolutely, or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$
.

$$2. \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^3 - 1}.$$

$$3. \sum_{n=0}^{\infty} \frac{\cos n\pi}{n^2}.$$

20 [marks]

END OF QUESTION PAPER