UNIVERSITY OF SWAZILAND

Final Examination 2005

Title of Paper

: Introduction to Calculus

Program

BSc./B.Ed./B.A.S.S. I

Course Number

M 115

Time Allowed:

Three (3) Hours

Instructions

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements:

None

:

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

- (a) Evaluate the following first derivatives $\frac{dy}{dx}$
 - (i) $y = 3x^4 x^2 + 2x$
 - (ii) $\begin{cases} x = 3t^2 26 \\ y = t^3 3t \end{cases}$
 - (iii) $y = x^{\sin x}$

[12 marks]

- (b) Evaluate the second derivatives $\frac{d^2y}{dx^2}$ of the following
 - $(i) y = \sin(3x + 2)$
 - (ii) $xy + y^2 = 1$

[8 marks]

Question 2

(a) Evaluate the following indefinite integrals

(i)
$$\int \left(x^4 + 3x^2 + \frac{1}{x} + \frac{1}{x^5}\right) dx$$

(ii)
$$\int \cos^3 x \ dx$$

(iii)
$$\int \frac{1}{x\sqrt{\ln x}} dx$$

[12 marks]

(b) Derive the reduction formula in (i) and use it to evaluate the integral in (ii)

(i)
$$\int \sin^m x \ dx = \frac{-\sin^{m-1} x \cos x}{m} + \frac{m-1}{m} \int \sin^{m-2} x \ dx$$

(ii)
$$\int \sin^5 x \ dx$$
 [8 marks]

2

Question 3

(a) Evaluate the following limits

(i)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

(ii)
$$\lim_{x \to 0} \frac{\sqrt{1-x} - \sqrt{1+x}}{x}$$

[8 marks]

(b) Use the definition (not formulas) to find the derivatives of the following functions

(i)
$$f(x) = 3x^2 + 5$$

(ii)
$$f(x) = \sqrt{x}$$

(iii)
$$f(x) = x^4$$

[12 marks]

Question 4

(a) Find the equation of the tangent to the curve

$$y = x^4 - 2x^3 + 3$$

at the point (-1,6).

[8 marks]

(b) Use the substitution $u = \tan\left(\frac{x}{2}\right)$ to evaluate

$$\int \frac{1}{1 + \sin x - \cos x}$$

[4 marks]

(c) Find the area enclosed between $y = 10 + 3x - x^2$ and y = 2x + 4.

[8 marks]

3

Question 5

(a) If n is a positive integer, make deductions about the n^{th} derivative $\frac{d^n y}{dx^n}$ for

$$y = \frac{1}{2 - 3x}.$$

[6 marks]

(b) Use trig substitution to evaluate the following

(i)
$$\int \frac{dx}{x\sqrt{x^2-1}}$$
 [5 marks]

(ii)
$$\int \frac{x^2}{(9-x^2)^{\frac{3}{2}}} dx$$
 [5 marks]

(c) Evaluate the following definite integral

$$\int_0^2 (16x - 3x^2 + x^3) \ dx.$$

[4 marks]

Question 6

(a) Show that

$$\int \sqrt{1+x} \ dx = \frac{2}{15}(1+x)^{\frac{3}{2}}(3x-2) + c$$

in two ways

(i) Using the substitution
$$u = \sqrt{1+x}$$
;

[5 marks]

[5 marks]

(b) Find $\frac{dy}{dx}$ in the following

$$y\cos 2x = x\sin 2y$$
.

[5 marks]

(c) Evaluate $\frac{d^2y}{dx^2}$ if

$$y = \cosh(3x^2 + 5).$$

[5 marks]

4

Question 7

(a) Use partial fractions to evaluate the following integrals

(i)
$$\int \frac{x}{x^2 + 2x - 3} \ dx$$

[5 marks]

(ii)
$$\int \frac{x^4 - x^3 - x - 1}{x^3 - x^2} \ dx$$

[7 marks]

(b) Find $\frac{dy}{dx}$ in the following

(i)
$$y = \arccos\left(\frac{1}{x}\right)$$

[4 marks]

(ii)
$$y^2 = \frac{x}{x+1}$$

[4 marks]

****** END OF EXAMINATION *******