UNIVERSITY OF SWAZILAND

Supplementary Examination 2005

Title of Paper

Algebra, Trigonometry and Analytic Geometry

Program

BSc./B.Ed. I

Course Number

M 111

Time Allowed

Three (3) Hours

Instructions

1. This paper consists of SEVEN questions on THREE pages.

2. Answer any five (5) questions.

3. Non-programmable calculators may be used.

Special Requirements:

None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

1

Question 1

(a) Use mathematical induction to prove that

$$3+5+7+\cdots+(2n+1)=n(n+2)$$

[12 marks]

(b) Given the circle

$$2x^2 + 2y^2 + 2x - 6y - 45 = 0,$$

find:

(i) the centre;

[4 marks]

(ii) the radius.

[4 marks]

Question 2

(a) Express the following complex numbers in the form a + ib

$$(i) \qquad \frac{3-2i}{2+5i}$$

[6 marks]

(ii)
$$(\cos 15^o + i \sin 15^o)^{12}$$
.

[6 marks]

(b) Find the first four terms in the expansion

$$(1-x^3)^{\frac{1}{4}}$$
.

[8 marks]

Question 3

(a) Consider the following system of linear equations

$$x+y-2z = 5$$
$$2x-y+z = 2$$
$$x-2y-z = 1$$

OR

$$\begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 1 & -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = AX = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 1 & -2 & -1 \end{pmatrix}.$$

Solve the system in three ways as follows:

(a) using Gaussian elimination;

[6 marks]

(b) using Cramer's rule;

[6 marks]

(c) using the inverse of the matrix A.

[8 marks]

Question 4

(a) Find the quotient and remainder when $4x^5 + 9x^3 - 3x^2 - 2x + 4$ is divided by x - 1.

[4 marks]

(b) Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 \\ -2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ -2 & -1 & 0 \end{pmatrix}$.

Compute, where possible

(i)
$$AB$$
 (ii) $A + 3B$ (iii) BA^T (iv) A^TC (v) AC^T

Indicate clearly anyone of (i)-(v) which does not exist.

[16 marks]

3

Question 5

(a) Given that z = -1 + i is a root of the equation

$$z^4 - 2z^3 - z^2 + 2z + 10 = 0,$$

find the remaining roots.

[10 marks]

(b) Find the four distinct 4th roots of the complex number

$$z = -8 - 8\sqrt{3}i.$$

[10 marks]

Question 6

- (a) Given the points A(-3,2) and B(5,6), find the equation of the straight line which passes through the midpoint of AB and which is perpendicular to the line y + 2x = 2. [6 marks]
- (b) Find the centre, vertices, foci eccentricity and directrices. Sketch the curve.

$$3x^2 + 4y^2 - 16y - 92 = 0$$

[14 marks]

Question 7

(a) Solve the following equation for x, where x is in the range $0 \le x < 360^{\circ}$

$$4-5\sin x-2\cos^2 x=0.$$

[8 marks]

- (b) Given that $\sin A = \frac{3}{5}$ and $\cos B = \frac{-5}{13}$, where A is in QI and B is in QII, find
 - (i) $\sin(A-B)$,
 - (ii) $\cos(A+B)$.

[12 marks]

****** END OF EXAMINATION *******