UNIVERISTY OF ESWATINI DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND PLANNING FINAL EXAMINATION, DECEMBER 2019

B.A., B.Ed., BSc., BASS, (FT/PT)

TITLE OF PAPER:

INTRODUCTION TO THE NATURAL ENVIRONMENT

COURSE NUMBER:

GEP111

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THIS PAPER IS DIVIDED INTO THREE SECTIONS

SECTION A:

TECHNIQUES AND SKILLS

ANSWER IN A SEPARATE ANSWER BOOK.

1. ANSWER ALL QUESTIONS (COMPULSORY)

2. THIS SECTION CARRIES 40 MARKS

SECTION B:

COMPULSORY SHORT QUESTIONS (35 MARKS)

SECTION C:

ANSWER ONE OF THE QUESTIONS (25 MARKS)

ILLUSTRATE YOUR ANSWERS WITH APPROPRIATE

DIAGRAMS.

SPECIAL REQUIREMENTS: Graph paper, Tracing paper, Map of Swaziland 1:50 000 Bhalekane Sheet No. 6)

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR

GEP111: INTRODUCTION TO THE NATURAL ENVIRONMENT –DECEMBER 2019 ANSWER SECTIONS B AND C IN A SEPARATE ANSWER BOOK FROM SECTION A

SECTION A: TECHNIQUES AND SKILLS (40 MARKS) COMPULSORY

QUESTION 1

For all questions requiring a map, refer to 1:50 000 Map of Swaziland: Bhalekane Sheet No. 6. For all questions show your workings.

- a) Using the map provided, give the 6-figure grid reference of the following locations:
 - i) Sikhunyane School

(2 marks)

ii) Litshe Trigonometric Station

(2 marks)

- b) Using the 6-figure grid reference provide the location of the following areas:
 - i) Sand River Dam Reservoir

(4 marks)

ii) Farm No. 63

(4 marks)

- c) Calculate the scale of an aerial photograph whose focal length is 5cm carried by an aircraft at 5000m above a terrain of 1500m. (3 marks)
- d) Calculate the shortest distance along the road between Dvokolwako School and Manzana School in metres and kilometres. (4 marks)
- e) Using the map provided calculate the total surface area for Farm no. R/259 in hectares and square kilometres. (6 marks)
- f) Copy and complete Table 1 below

(6 marks)

Table 1: The relationship between area of maps, scale and true area on Earth.

Area on Map	Scale of Map	True area on Earth
16.5cm ²	1:150 000	km²
65.3.cm ²	1:	1125.4 ha

g) Using the information in Tables 3, 4, 5 and 6, copy and complete the Table 2 below (calculate the incoming, out-going and net radiation in the following table for the month of September) (9 marks)

Table 2: Copy and complete missing values

Location	es	T (°C)	n (hours)	Ri	Ro	Н
20 °N	5.8	9	7.0			
0°	15.35	20	10.5			
30 °S	14.2	26	11.2			

(40 Marks)

Table 3: Solar Radiation (Ra) expressed in equivalent evaporation (mm/day)

Latitude	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
60°N	1.4	3.6	7	11.1	14.6	16.4	15.6	12.6	8.5	4.7	2	0.9
50°N	3.7	6	9.2	12.7	15.5	16.6	16.1	13.7	10.4	7.1	4.4	3.1
40°N	6.2	8	11.1	13.8	15.9	16.7	16.3	14.7	12.1	9.3	6.8	5.6
30 ⁶ N	8.1	10.5	12.8	14.7	16.1	16.5	16.2	15.2	13.5	11.2	9.1	7.9
20°N	10.8	12.4	14	15.2	15.7	15.8	15.8	15.4	14.4	12.9	11.3	10.4
10°N	12.8	13.9	14.8	15.2	15	14.8	14.9	15	14.8	14.2	13.1	12.5
Equator	14.6	15	15.2	14.7	13.9	13.4	13.6	14.3	14.9	15	14.6	14.3
10°S	14.6	15	15.2	14.7	13.9	13.4	13.6	14.3	14.9	15	14.6	14.3
20°S	16.8	15.7	15.1	13.9	12.5	11.7	12	13.1	14.4	15.4	15.7	15.8
30°S	17.2	15.8	13.5	10.9	8.6	7.5	7.9	9.7	12.3	14.8	16.7	17.5
40°S	17.3	15.1	12.2	8.9	6.4	5.2	5.6	7.6	10.7	13.8	16.5	17.8
50°S	16.9	14.1	10.4	6.7	4.1	2.9	3.4	5.4	8.7	12.5	16	17.6
60°S	16.5	12.6	8.3	4.3	1.8	0.9	1.3	3.1	6.5	10.8	15.1	17.5

Source: Shaw, 1983. Hydrology in Practice

Table 4:Values of σT^4

°F	0	T 1	2	3	4	5	6	7	8	9
30	11	11.1	11.2	11.3	11.4	11.5	11.6	11.6	11.7	11.9
40	11.9	12	12.1	12.2	12.3	12.4	12.5	12.6	12.7	1 2.8
50	12.9	130	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.9
60	14	14.1	14.2	14.3	14.4	1.5	14.6	14.5	14.8	14.9
°C										
-0	11.2	11								
0 .	11.2	11.4	11.5	11.7	11.9	12	12.2	12.3	12.5	12.7
10	12.9	13.1	13.3	13.5	13.7	13.9	14	14.2	14.4	14.6
20	14.8	15	15.2	15.4	15.6	15.8	16	16.2	16.4	16.6

Source: Shaw, 1983. Hydrology in Practice

Table 5: Relationship between noon solar angle and intensity of solar radiation

Solar angle	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°
0°	0	1.75	3.49	5.23	6.98	8.72	10.5	12.2	13.9	15.6
10°	17.4	19.1	20.8	22.5	24.2	25.9	27.6	29.2	30.9	32.6
20°	34.2	35.8	37.5	39.1	40.7	42.3	43.8	45.4	47	48.5
30°	50	51.5	53	54.5	55.9	57.4	58.8	60.2	61.6	62.9
40°	64.3	65.6	66.9	68.2	69.5	70.7	71.9	73.1	74.3	75.5
50°	76.6	77.7	78.8	79.9	80.9	81.9	82.9	83.9	84.8	85.7
60°	86.6	87.5	88.3	89.1	89.9	89.9	90.6	92.1	92.7	93.4

70°	94	94.6	95.1	95.6	96.1	96.6	97	97.4	97.8	98.2	
80°	98.5	98.8	99	99.3	99.5	99.6	99.8	99.9	99.9	100	

Table 6:mean daily duration of maximum possible sunshine hours (N)

i doic o.meai	1 4411	T	1 01 11142		possion		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u>/</u>		· · · · · · · · · · · · · · · · · · ·	
North Lat.	Jan	Feb	Mar	Apr	May	Jun e	Jul y	Au g	Sept	Oct	No v	De c
South Lat.	July	Aug	Sept	Oct	Nov	De c	Jan	Feb	Mar	Apr	Ma y	Jun e
60°N/S	6.7	9	11.7	14. 5	17.1	18. 6	17. 9	15. 5	12.9	10. 1	7.5	5.9
58°N/S	7.2	9.3	11.7	14. 3	16.6	17. 9	17. 3	15. 3	12.8	10. 3	7.9	6.5
56°N/S	7.6	9.5	11.7	14. 1	16.2	17. 4	16. 9	15	12.7	10. 4	8.3	7
54°N/S	7.9	9.75	11.7	13. 9	15.9	16. 9	16. 5	14. 8	12.7	10. 5	8.5	7.4
52°N/S	8.38	9.94	11.8	13. 8	15.6	16. 5	16. 1	14. 6	12.7	10. 6	8.8	7.8
50°N/S	8.58	10	11.8	13. 7	15.3	16. 3	15. 9	14. 4	12.6	10. 7	9	8.1
48°N/S	8.8	10.2	11.8	13. 6	15.2	16	15. 6	14. 3	12.6	10. 9	9.3 6	8.3
46°N/S	9.1	10.4	11.9	13. 5	14.9	15. 7	15. 4	14. 2	12.6	10. 9	9.5	8.7
44° N/S	9.3	10.5	11.9	13. 4	14.7	15. 4	15. 2	14	12.6	11	9.7	8.9
42°N/S	9.4	10.6	11.9	13. 4	14.6	15. 2	14. 9	13. 9	12.6	11. 1	9.8	9.1
40°N/S	9.63	10.7	11.9	13. 3	14.4	15	14. 7	13. 7	12.5	11. 2	10	9.3
35°N/S	10.1	11	11.9	13. 1	14	14. 5	14. 3	13. 5	12.4	11. 3	10. 3	9.8 6
30°N/S	10.4	11.1	12	12. 9	13.6	14	13. 9	13. 2	12.4	11. 5	10. 6	10. 2
25°N/S	10.7	11.3	12	12. 7	13.3	13. 7	13. 5	13	12.3	11. 6	10. 9	10. 6
20°N/S	11	11.5	12	12. 6	13.1	13. 3	13. 2	12. 8	12.3	11. 7	11. 2	10. 9
15°N/S	11.3	11.6	12	12. 5	12.8	13	12. 9	12. 6	12.2	11.	11. 4	11. 2
10°N/S	11.6	11.8	12	12. 3	12.6	12. 7	12. 6	12. 4	12.1	11. 8	11. 6	11. 5
5°N/S	11.8	11.9	12	12. 2	12.3	12. 4	12. 3	12. 3	12.1	12	11. 9	11. 8
Equator	12	12	12	12	12	12	12	12	12	12	12	12

Source: Shaw, 1983. Hydrology in Practice

SECTION B: ANSWER THE FOLLOWING QUESTION:

QUESTION 2:

- a) Describe the theory of plate tectonics and describe how this accounts for earthquakes, and why it has replaced the earlier concept of 'Continental Drift'. (15 marks)
- b) Draw a diagram of the hydrological cycle and explain how humans have affected it.

(10 marks)

c) Explain FIVE of the following terms or concepts BRIEFLY:

(10 marks)

- i) Aquifer
- ii) Groundwater table
- iii) Troposphere
- iv) Shield volcano
- v) Metamorphic aureole
- vi) Constructive plate margin
- vii) Xenolith

(35 Marks)

SECTION C: ANSWER EITHER QUESTION 3 OR QUESTION 4

QUESTION 3:

a) Describe the vertical structure of the earth's atmosphere in relation to temperature.

(8 marks)

- b) Describe HOW the atmospheric circulation contributes to the heat balance of the earth.

 (5 marks)
- c) Draw a simple diagram to illustrate how a stream may transport it's load. (5 marks)
- d) Briefly explain the formation and the basis for the classification of metamorphic rocks, and name two examples of **sedimentary** rocks. (7 marks)

(25 Marks)

QUESTION 4:

- a) Describe the term 'Global Climate Change', and explain how human behaviour has contributed to this. (9 marks)
- b) Explain how humans have modified components of the atmospheric system.

(4 marks)

- c) Describe why scientists have concluded that there is a heat exchange between the earth's poles and the equator. (4 marks)
- d) Sedimentary rocks are classified according to how they form. Give a detailed account of this classification system and name two **igneous** rocks. (8 marks)

(25 Marks)

EQUATIONS

```
Fahrenheit to Celsius: {}^{\circ}C = \frac{5}{9} ({}^{\circ}F - 32)
```

Celsius to Fahrenheit: ${}^{\circ}F = \frac{9}{5} {}^{\circ}C + 32$

Kelvin to Celsius: $K={}^{\circ}C+273.15$ Celsius to Kelvin: ${}^{\circ}C=K-273.15$ Fahrenheit to Kelvin: $K={}^{\circ}F+457.87$ Kelvin to Fahrenheit: ${}^{\circ}F=K-457.87$

```
1 centimeter
                              = 10 millimeters
                                                                       1 cm
                                                                                        = 10 mm
    1 meter
                              = 100 centimeters
                                                                                        = 100 cm
                                                                       1 m
    1 kilometer
                              = 1000 meters
                                                                       1 km
                                                                                        = 1000 m
    1 inch
                              = 2.54 centimeters
                                                                       1 in
                                                                                        = 2.54 cm
    1 foot
                              = 30.48 centimeters
                                                                       1 ft
                                                                                        =30.48 cm
    1 yard
                              = 91.44 centimeters
                                                                       1 yd
                                                                                        = 91.44 cm
    1 yard
                              = 0.9144 meters
                                                                       I yd
                                                                                        = 0.9144 m
    1 mile
                              = 1609.344 meters
                                                                                        = 1609.344 m
                                                                       1 mi
                              = 1.609344 kilometers
                                                                                        = 1.609344 km
    R_{\circ} = ... \sigma T^{4} \left\{ 0.56 - 0.09 \sqrt{e_{s}} \right\} \left\{ 0.1 + \left( 0.9 \times (n \div N) \right) \right\} \frac{mm}{day}
     e/e ×100
    K = (120.6 - T)(4\sqrt{v+5} - \frac{v}{4})
  R = \frac{(1 \div A)(\sum R_j a_j)}{n}
R = (1 \div n)(\sum R_j)
R = (1 \div A) \left( \sum r_i a_i \right)
  R_i = 0.95 R_a \times (n \div N) \frac{mm}{day}
   q_{j} = \frac{\left(v_{j} + v_{j+1}\right)\left(y_{i} + y_{i+1}\right)}{2}b_{j}
    Q = \sum_{S=f/H} q_j
```

* * * * ;