UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013

- TITLE OF PAPER : ENVIRONMENTAL CHEMISTRY
- COURSE NUMBER : ERM640

.

- TIME ALLOWED : 3 HRS
- INSTRUCTIONS : THIS EXAMINATION HAS SEVEN (6) QUESTIONS
 - : ANSWER ANY FOUR QUESTIONS
 - : EACH QUESTION HAS 25 MARKS
 - : THIS EXAMINATION HAS A TOTAL OF 100 MARKS
 - : DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER

DO NO TOPEN THIS PAPER UNTIL THE CHIEF INVIGILATOR INSTRUCTS YOU TO DO SO

UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2013

- TITLE OF PAPER : ENVIRONMENTAL CHEMISTRY
- COURSE NUMBER : ERM640
- TIME ALLOWED : 3 HRS
- INSTRUCTIONS :

7

- THIS EXAMINATION HAS SEVEN (6) QUESTIONS
- : ANSWER ANY FOUR QUESTIONS
- : EACH QUESTION HAS 25 MARKS
- : THIS EXAMINATION HAS A TOTAL OF 100 MARKS
- : DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER

DO NO TOPEN THIS PAPER UNTIL THE CHIEF INVIGILATOR INSTRUCTS YOU TO DO SO

Question 1 (25 Marks)

a) Using diagrams, examples and or equations write short notes on any two of the following terms.

i) Octanol / water partition coefficient, Kow

ii) Water Solubility, S_w

iii) Henry's, H

In each highlight the environmental relevance, methods of determination and where applicable give methods of estimation using Quality Structure Activity Relationships (QSAR's) [10]

b) A model environmental has 6 major phases; air, water, soil, sediments, suspended solids and biota. It has an area of 1 km^2 and an atmosphere of 10 km high. Soil to depth of 3 cm covers 30% of the surface, while the rest is covered with water to an average depth of 10 m. Water has a 3-cm layer of sediment, contains 5 ml of suspended solids per cubic meter, and 0,5 mlm⁻³ of biota. All phases are homogeneous. 100 moles. pp-DDT is discharged from a factory to this environment until steady concentrations in each phase are reached at 25 °C.

pp-DDT has the following characteristics at 25^oC.

K _{sorb} (soil, 2% organic carbon)	1,700
K _{sorb} (sediment, suspend solids, 4% organic carbon)	25,400
K _B (fish, 5% lipid)	77,400
K _{ow}	1,555,000
H	$2.3 \text{ mole}^{-1} \text{ m}^3 \text{ Pa}$

i) Determine Henry's constant, Z values for water, soil, fish and sediment, respectively. [10]

ii) Establish the overall distribution of the pollutant in this environment using the fugacity concept. [5]

Question 2 (25 Marks)

a) Write short notes on Soil Sorption as an environmental fate property. [15]

b) i) Using thermodynamic assumptions derive the Langmuir adsorption equation. [4]

$$\Gamma = \frac{\Gamma_{\infty} K C_{equil.}}{1 + K C_{equil.}}$$

The sorption of Cr^{+6} on a slit loam yielded the following results: ii)

Equilibrium Concentration mg/1	Cr ⁺⁶
	Sorbed (µg/g)
0.08	13
0.20	31
0.32	51
0.40	67
0.53	86

Verify whether or not this sorption follows a one site Langmuir or the Freundlich Sorption Isotherm. [2]

Useful relations:

$$\Gamma = KC_{eq.}^{N} \qquad \Gamma = \frac{\Gamma_{\infty}KC_{equil.}}{1 + KC_{equil.}}$$

Determine the appropriate constants and comment on their magnitude.

Question 3 [25 Marks]

- Write short notes on the following pollutant transport processes in aquatic a) environments.
 - i) Diffusion [8] ii)

[4]

- Advection [6]
- iii) Dispersion [6]
- A truck which is carrying water containing 1275 mg/L benzene overturns and **b**) spills a volume of water sufficient to saturate a thin acquifer over an area 5 m^2 . The acquifer conatins ground flowing with an average linear velocity of 0.45 m/day. Assume that DL and DT are 2.1 m^2/day and 0.21 m^2/day repsectively.

There is a nearby private well at a seasonal cottage. If the center of the spill is located at Xo=0 and Yo=0, then the location of the well is x=72 m and y=5.5m. The owners of the Private well are away for the season and will not return for another 200 days. If there is no degradation or retardation of benzene as it moves through the acquifer, what will the concentration of benzene be in the well when the owners return? [5]

$$C = \frac{C_0 A}{2(\sqrt{\pi})^2 \left\{ (2D_x t) (2D_y t) \right\}^{1/2}} \exp \left[-\frac{I}{2} \left\{ \frac{(x - x_0 - u_x t)^2}{2D_x t} + \frac{(y - y_0 - u_y t)^2}{2D_y t} \right\} \right]$$

Question 4 [25 Marks]

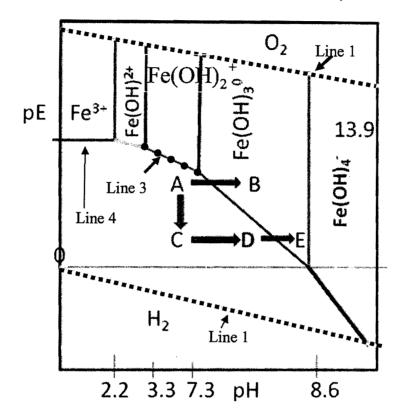
- a) Using an example of your choice define the term "risk". [5]
- b) You are an environmental consultant and have been asked to conduct a risk assessment on a site on the outskirts of a city selected for domestic housing development. Outline diagrammatically the steps you would take in this evaluation.[15]
- c) Daily intake values and reference dose for Cu, Zn, Cd, inorganic arsenic and organic Hg from oysters are as follows:

	antagaratan Bagaratan	liptano Alias Liptano	
Cu	40	373	909
Zn	300	531	129.3
Cd	0.5	0.340	0.832
As	0.3	0.484	11.8
Hg	0.1	0.056	0.178

Evaluate the risk associated with these elements at a maximum daily oyster intake of 139 g/day for an adult weight of 65 kg and comment on your results. [5]

Useful relation:

 $HQ = \frac{EFr \times ED_{tot} \times SFI \times MCS}{RFDo \times BWa \times ATn}$


Where:

Efr: Exposure frequency (350 day/yr) EDtot: exposure duration (30 yrs) SFI: sea food ingestion g/day RFDo: Reference dose, oral (mg/kg/day) (TDI) MCS: metal concentration in edible portion of food ATn: average time (30 yrs) BW: Body weight.

Question 5 [25 Marks]

- a) Write short notes on the following terms
 - i) Chemical speciation
 - ii) Water stratification in lakes

The diagram below illustrates some oxidation/reduction chemistry of Iron.

- b) Using the diagram above and any other pertinent information:
 - i) What are denoted by the two dashed lines indictaes a line 1 and line 2 [2]
 - ii) Locate the pH and redox conditions in the following types of water [5]
 1) Oceans
 - 2) Acid mine drainage
 - 3) Anoxic sediments
 - 4) Ground water
 - 5) Peat bogs

c) Using the appropriate equilibrium reactions of iron species below derive the equation for the equilibrium lines denotes line 3 and line 4. [6]

Oxidation $Fe^{3+} + e^- \leftarrow Fe^{2+} \log K = +13.2$

Hydrolysis reactions for Fe³⁺

$$Fe^{+3} + H_2O \leftarrow Fe(OH)^{2+} + H^+ \log K_1 = -2.2$$

$$Fe(OH)^{2+} + H_2O \leftarrow Fe(OH)^+_2 + H^+ \log K_2 = -3.3$$

$$Fe(OH)^{2+}_2 + H_2O \leftarrow Fe(OH)^+_3 + H^+ \log K_3 = -7.3$$

$$Fe(OH)^+_3 + H^+_2O \leftarrow Fe(OH)^+_4 + H^+ \log K_4 = -8.3$$

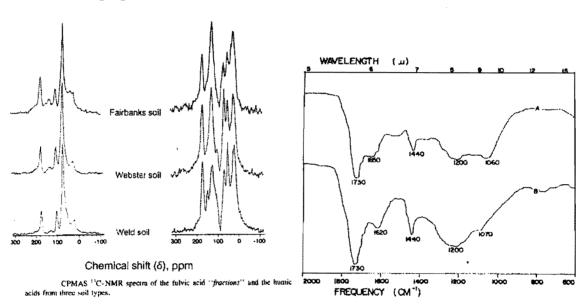
$$Fe(OH)^+_3 + 3H^+ \leftarrow Fe^{+3} + 3H_2O \log K_8 = -2.0$$

hydrolysis reactions of Fe²⁺

$$Fe(OH)_{2}^{+} + 2H^{+} + 2e^{-} \quad \overleftarrow{\leftarrow} \quad Fe^{+2} + 2H_{2}O \quad \log K_{s} = +18.7$$

$$Fe(OH)_{3}^{0} + 3H^{+} + e^{-} \quad \overleftarrow{\leftarrow} \quad Fe^{+2} + 3H_{2}O \quad \log K_{s} = +26$$

$$Fe(OH)_{4}^{-} + 4H^{+} + e^{-} \quad \overleftarrow{\leftarrow} \quad Fe^{+2} + 4H_{2}O \quad \log K_{s} = +34.6$$


Interconversion

$$Fe^{+3} + 3H_2O \quad \overleftarrow{\leftarrow} Fe(OH)_3 \quad \log K = -4.0$$

Question 6 [25 Marks]

a) With the aid of the ¹²C-NMR and infra-red spectra below and any other pertinent facts compare and contrast humic and fulvic acids.

[15]

In your discussion include genesis reactions, chemical and physical properties, separation (extraction) techniques and any other important similarities/differences.

b) Using examples explain the role of humic/fulvic acids in pollutants transport. [10]

In your analysis include the role of functional groups, complexation, binding capacity and its role in oxidation reduction reactions in the aquatic environment.

Useful Relations	General Data		
(RT) _{298-15K} =2.4789 kJ/mol	speed of light	С	2.997 925x10 ⁸ ms ⁻¹
(RT/F) _{298-15K} =0.025 693 V	charge of proton	е	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15 500.15 1000.15	Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.61 207.22 347.62 695.13	Boltzmann constant	k	1.380 66x10 ⁻²³ J K ⁻¹
$1 \text{mmHg}=133.222 \text{ N m}^{-2}$	Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
hc/k=1.438 78x10 ⁻² m K			8.205 75x10 ⁻² dm ³ atm K ⁻¹ n
$1 atm 1 cal 1 eV 1 cm^{-1}$	······································		
$\frac{12 \text{ m}}{1.01325 \text{ m}^{-2}} \frac{1}{4.184} \text{ J} \frac{1}{1.602} \frac{189 \text{ m}^{-19} \text{ J}}{1.602} \frac{1.124 \text{ m}^{-3} \text{ eV}}{1.01325 \text{ m}^{-2}}$	Planck constant	h	6.626 18x10 ⁻³⁴ Js
760torr 96.485 kJ/mol 1.9864x10 ⁻²³ J			
1 bar 8065.5 cm ⁻¹		$dt = \frac{h}{2\pi}$	1.054 59x10 ⁻³⁴ Js
	Avogadro constant	L or N _{av}	6.022 14x10 ²³ mol ⁻¹
SI-units:	Atomis mass unit	u	1.660 54x10 ⁻²⁷ kg
$1 L = 1000 ml = 1000 cm^3 = 1 dm^3$	Electron mass	me	9.109 39x10 ⁻³¹ kg
1 dm = 0.1 m	Proton mass	m _p	$1.672\ 62 \mathrm{x} 10^{-27} \mathrm{kg}$
1 cal (thermochemical) = 4.184 J	Neutron mass	m _n	1.674 93x10 ⁻²⁷ kg
dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m	Vacuum permittivity	$\varepsilon_{o} = \mu_{o}^{-1} c^{-2}$	$8.854 \ 188 \times 10^{-12} \ J^1 \ C^2 \ m^{-1}$
force: $1N=1J m^{-1}=1kgms^{-2}=10^5$ dyne pressure: $1Pa=1Nm^{-2}=1Jm^{-2}$		μ.	$4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
1J = 1 Nm power: 1W = 1J s ⁻¹ potential: 1V = 1 J C ⁻¹	Bohr magneton	$\mu_{\rm B} = \frac{e 49}{2 \rm m} .$	9.274 02x10 ⁻²⁴ JT ⁻¹
magnetic flux: $1T=1Vsm^{-2}=1JCsm^{-2}$ current: $1A=1Cs^{-1}$	Nuclear magneton	$\mu_{\rm N} = \frac{e^{i \Omega}}{2m_{\rm p}}$	5.05079x10 ⁻²⁷ JT ⁻¹
Prefixes:	Gravitational constant	G	6.67259x10 ⁻¹¹ Nm ² kg ⁻² 9.80665 ms ⁻²
p n m m c d k M G	Gravitational	g	9.80665 ms ⁻²
pico nano micro milli centi deci kilo mega giga 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{-2} 10^{-1} 10^{-	acceleration		
10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-1} $10^$	Bohr radius	a _o	5.291 77x10 ⁻¹¹ m

•

THE PERIODIC TABLE OF ELEMENTS

Group	1	2	3	4	5	6	7	8	- 9	10	11	12	13	14	15	16	17	18
	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIB		IB	ПВ	IIIA	ĪVA	VA	VIA	VIIA	VIIIA
Period 1	1 H 1.008		NON-METALS											ann genrade ha (g. 1-22).				
2	3 Li 6.94	4 Be 9.01			4				METAL	LOIDS	€		5 B 10.81					
3	11 Na 22.99	12 Mg 24.31				→ M	IETALS						13 Al 26.9	14 Si 28.09				
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.01	25 Mn 54.9	26 Fe 55.85	27 Co 58.71	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.7	32 Ge 72.59	33 As 74.92			
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 91.22	42 Mo 95.94	43 Tc 98.9	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6		
6	55 Cs 132.9	56 Ba 137.3	71 Lu 174.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 196.9	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 208.9	84 Po 210	85 At 210	
7	87 Fr 223	88 Ra 226.0	103 Lr 257	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									_

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Lanthanides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
Actinides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

.

.

SOURCE: International Union of Pure and Applied Chemistry, I mills, ed., Quantities, Units, and symbols in Physical Chemistry, Blackwell Scientific publications, Boston, 1988, pp 86-98.