UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND **PLANNING**

SUPPLEMENTARY EXAMINATION, 2011

TITLE OF PAPER

: Introduction to the Physical Environment

COURSE NUMBER

: GEP 111

TIME ALLOWED

3 hours

:

INSTRUCTIONS

SECTION A IS COMPULSORY

ANSWER ANY TWO QUESTIONS

FROM SECTION B

ILLUSTRATE YOURS ANSWERS

APPROPRIATE DIAGRAMS

MARKS ALLOCATED : QUESTION 1 CARRIES 40 MARKS

THE OTHER QUESTIONS CARRY

30 MARKS EACH

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN **GRANTED BY THE INVIGILATOR**

UNIVERSITY OF SWAZILAND

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND **PLANNING**

SUPPLEMENTARY EXAMINATION, 2011

TITLE OF PAPER

: Introduction to the Physical Environment

COURSE NUMBER

: GEP 111

TIME ALLOWED

3 hours

:

INSTRUCTIONS

SECTION A IS COMPULSORY

ANSWER ANY TWO QUESTIONS

FROM SECTION B

ILLUSTRATE YOURS ANSWERS

APPROPRIATE DIAGRAMS

MARKS ALLOCATED : QUESTION 1 CARRIES 40 MARKS

THE OTHER QUESTIONS CARRY

30 MARKS EACH

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN **GRANTED BY THE INVIGILATOR**

SECTION A: TECHNIQUES AND SKILLS CHOOSE AND ANSWER ONE QUESTION ONLY

QUESTION 1

a) Explain three ways in which scale can be expressed.

(6 marks)

b) Distinguish between a small and large scale.

(4 marks)

QUESTION 2

With reference to topographical map of Swaziland (PWD 12) calculate the following:

i) Surface area of farm number 922 in km² and in hectares.

(4 marks)

ii) Cultivated area of farm number 922 in km² and in hectares.

(4 marks)

QUESTION 3

With reference to tables 1, 2, and 3 calculate the amount of in-coming and outgoing and net solar radiation in Manzini (26.30^oS) under the hypothetical conditions shown in the table below.

Month	es	T(°C)	n(hours)	Ri	R _o	Н
January	16.4	23	8.0			·,,
June	11.8	9	9.5			
November	21.8	27	13.2			

(12 marks)

QUESTION 4

Atmospheric pressure decreases with an increase in altitude at an approximate rate of 12.7 millibars (mb) per 100 metres. Estimate the atmospheric pressure in millibars at the following locations:

	(40 Marks)
e) Mahamba Mountain (1650) m)	(2 marks)
d) Gobolondlo Mountain (1800 m)	(2 marks)
c) Bulembu Mountain (1590 m)	(2 marks)
b) Tugela Gorge (135 m)	(2 marks)
a) Mount Everest (35 00 m)	(2 marks)

TABLE	TABLE 1: SOLAR RADIATION (RA) EXPRESSED IN EQUIVALENT EVAPORATION (MM/DAY)											
Latitude	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
60°N	1.4	3.6	7.0	11.1	14.6	16.4	15.6	12.6	8.5	4.7	2.0	0.9
50°N	3.7	6.0	9.2	12.7	15.5	16.6	16.1	13.7	10.4	7.1	4.4	3.1
40°N	6.2	8.0	11.1	13.8	15.9	16.7	16.3	14.7	12.1	9.3	6.8	5.6
30°N	8.1	10.5	12.8	14.7	16.1	16.5	16.2	15.2	13.5	11.2	9.1	7.9
20°N	10.8	12.4	14.0	15.2	15.7	15.8	15.8	15.4	14.4	12.9	11.3	10.4
10°N	12.8	13.9	14.8	15.2	15.0	14.8	14.9	15.0	14.8	14.2	13.1	12.5
Equator	14.6	15.0	15.2	14.7	13.9	13.4	13.6	14.3	14.9	15.0	14.6	14.3
10°S	14.6	15.0	15.2	14.7	13.9	13.4	13.6	14.3	14.9	15.0	14.6	14.3
20°S	16.8	15.7	15.1	13.9	12.5	11.7	12.0	13.1	14.4	15.4	15.7	15.8
30°S	17.2	15.8	13.5	10.9	8.6	7.5	7.9	9.7	12.3	14.8	16.7	17.5
40°S	17.3	15.1	12.2	8.9	6.4	5.2	5.6	7.6	10.7	13.8	16.5	17.8
50°S	16.9	14.1	10.4	6.7	4.1	2.9	3.4	5.4	8.7	12.5	16.0	17.6
60°S	16.5	12.6	8.3	4.3	1.8	0.9	1.3	3.1	6.5	10.8	15.1	17.5

Source: Shaw, 1983. Hydrology in Practice.

TABLE 2: MEAN DAILY DURATION OF MAXIMUM POSSIBLE SUNSHINE HOURS (N)

North Lat.	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
South Lat.	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Арг	May	June
60°N/S	6.7	9.0	11.7	14.5	17.1	18.6	17.9	15.5	12.9	10.1	7.5	5.9
58°N/\$	7.2	9.3	11.7	14.3	16.6	17.9	17.3	15.3	12.8	10.3	7.9	6.5
56°N/S	7.6	9.5	11.7	14.1	16.2	17.4	16.9	15.0	12.7	10.4	8.3	7.0
54°N/S	7.9	9.75	11.7	13.9	15.9	16.9	16.5	14.8	12.7	10.5	8.5	7.4
52°N/S	8.38	9.94	11.8	13.8	15.6	16.5	16.1	14.6	12.7	10.6	8.8	7.8
50°N/S	8.58	10.0	11.8	13.7	15.3	16.3	15.9	14.4	12.6	10.7	9.0	8.1
48°N/S	8.8	10.2	11.8	13.6	15.2	16.0	15,6	14.3	12.6	10.9	9.36	8.3
46°N/S	9.1	10.4	11.9	13.5	14.9	15.7	15,4	14.2	12.6	10.9	9.5	8.7
44° N/S	9.3	10.5	11.9	13.4	14.7	15.4	15.2	14.0	12.6	11.0	9.7-	8.9
42°N/S	9.4	10.6	11.9	13.4	14.6	15.2	14.9	13.9	12.6	11.1	9.8	9.1
40°N/S	9.63	10.7	11.9	13.3	14.4	15.0	14.7	13.7	12.5	11.2	10.0	9.3
35°N/S	10.1	11.0	11.9	13.1	14.0	14.5	14.3	13.5	12.4	11.3	10.3	9.86
30°N/S	10.4	11.1	12.0	12.9	13.6	14.0	13.9	13.2	12.4	11.5	10.6	10.2
25°N/S	10.7	11.3	12.0	12.7	13.3	13.7	13.5	13.0	12.3	11.6	10.9	10.6
20°N/S	11.0	11.5	12.0	12.6	13.1	13.3	13.2	12.8	12.3	11.7	11.2	10.9
15°N/S	11.3	11.6	12.0	12.5	12.8	13.0	12.9	12.6	12.2	11.8	11.4	11.2
10°N/S	11.6	11.8	12.0	12.3	12.6	12.7	12.6	12.4	12.1	11.8	11.6	11.5
5°N/S	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8
Equator	12.0	12.0	12.0	12.0	12,0	12.0	12.0	12.0	12.0	12.0	12.0	12.0

Source: Shaw, 1983. Hydrology in Practice.

TABLE 3: VALUES OF of

°F	0	1	2	3	4	5	6	7	8	9
30	11.0	11.1	11.2	11.3	11.4	11.5	11.6	11.6	11.7	11.87
40	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8
50	12.9	130.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.9
60	14.0	14.1	14.2	14.3	14.4	1.5	14.6	14.5	14.8	14.9
°C										
-0	11.2	11.0								
0	11.2	11.4	11.5	11.7	11.9	12.0	12.2	12.3	12.5	12.7
10	12.9	13.1	13.3	13.5	13.7	13.9	14.0	14.2	14.4	14.6
20	14.8	15.0	15.2	15.4	15.6	15.8	16.0	16.2	16.4	16.6
	100	3 Hodrol	· D							

Source: Shaw, 1983. Hydrology in Practice.

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION 5:

Give an overview of the evolution and development of life during the geological history of Earth. (30 marks)

QUESTION 6:

Discuss where you would preferably drill for water in the lowveld of Swaziland, and why at the chosen place. (30 marks)

QUESTION 7:

Discuss the consequences that are related to the climatic warming-up of the Earth. (30 marks)

QUESTION 8:

Describe the events that occur during the processes of plate tectonics and continental drifting. (30 marks)