University of Eswatini

Department of Computer Science

Final Main Examination: December 2019

Title of paper : Computer Programming II
Course Number : CSC213

Time Allowed : Three (3) hours

This paper may not be opened until permission has been granted by the invigilator

Page 1 0f 15

INSTRUCTIONS

1. Answer Question 1 in section A.
2. Answer only one (1) question in section B.
3. The examination is marked out of 80 marks
4. This exam consists of 15 printed pages including the cover page.
5. The Exam userld, password, tree, context and server name will be provided by the chief
invigilator.
6. Read the complete question paper carefully before starting to work on the problem.
7. Write pseudo codes (hand—Written) in the provided answer folder.
8. Submit your written answer folder (for pseudocode) and zipped project folder as
instructed by the invigilator. -
9. Use the last 10 minutes fo check your submission. It remains your responsibility to make
sure everything is submitted accordingly.
10. The names of all your files(project, source file and output files) should have following
format
Sememmn (Project Name)
Seveenn .cpp (source file)
Sermmem TXT (data files)
The dashes in file names ate the six digits of your UNESWA student identity number.

SPECIAL REQUIREMENTS:

1. For each student, a standalone PC with working Visual Studio 2010 C++ compiler.

2. Students should not have access to the internet.

ANSWER FORMAT

1. Where required, write (in your answer folder) a detailed pseudo-code.

2. Compile and test your code. Make sure you submit code with no syntax errors. Where
necessary comment statements that have syntax etrors.
Provide sufficient comment in your source code.

4. Output from your program must be properly formatted.

DATA
1. The required data text files, and ANNEX_A source files, are stored in the folder
EXAM2019 CSC213_DATA_ANNEX and will be provided by the chief invigilator.
2. Except where instructed, the data files and the ANNEX source files should not be

modified. However, where necessary content can be used in your program.

Page 2 of 15

PROBLEM STATEMENT

The task is to design a program which can be used to extract and analyse information about the
Boston (USA) criminal records. The data is stored in two separate files

(criminal_offense_info.csv and bostoncrimeinfo.cv).

The datasets contain records of crime incident reports, which includes a reduced set of fields
focused on captuting the type of incident as well as when and where it occurred. Crime incident
reports are provided by Boston Police Department (BPD) to document the initial details
surrounding an incident to which BPD officers respond. Records in the new system begin in June
of 2015. The dataset has 327, 821 observations (rows) and 17 variables (columns). These

variables are:

Variable Description

INCIDENT NUMBER A unique incidence report number

QOFFENSE_CODE Criminal offense code

OFFENSE_CODE_GROUFP Criminal offense group

OFFENSE DESCRIPTION Description of criminal incidence

DISTRICT The district in which incident occurred.

REPORTING_AREA The district area that reported the incident,

SHOOTING An indicator{Y or N} of whether gun shots were fired during the
incident.

OCCURRED _ON_DATE Date and time of the incident

YEAR The year the incident occurred. In this dataset the data was collected
between 2015 and 2018,

MONTH The month in which incident occurred.

DAY OF WEEK The day (Monday to Sunday) of the week in which incident occurred.

HOUR The hour (0-23)of the day in which incident occurred

UCR_PART Unique critie reporting (UCR) part or category. Could be Part One,
Part Two or Part Three.

STREET, The street of the crime occurance

LATITUDE Latitude

LONGITUDE Longitude

LOCATION A pair of latitude and longitude.

The data may be used to answer questions such as: How has crime changed over the years? Is it
possible to predict where or when a crime will be committed? Which areas of the city have
evolved over this time span? In which area are most crimes are committed? Which day, or time of

the day, are crimes most likely to be committed?

For purposes of this examination, a simplified and reduced dataset will be used. The data is stored

in two separate files as explained below,

Page 30f 15

1. criminal_offense_info.csv — This file contains 222 criminal offense records using only 3
variables; namely OFFENSE_CODE, OFFENSE _CODE_GROUP and UCR_PART.

2. bostoncrimeinfo.csv — contains 327, 821 observations (rows) and 9 variables (columns).
The variables are: INCIDENT_NUMBER, OFFENSE_CODE, DISTRICT,
REPORTING_ AREA, SHOOTING, YEAR, MONTH, DAY_OF_WEEK and HOUR.

To speed up code development and debugging, a smaller version of this file, called
train_bostoncrimeinfo.csv is provided. It is therefore recommended that you first test your

code using the smaller dataset.

Samples of the CSV files are shown below:

bostoncrimeinfo.csy

INCIDENT_NUMBER :OFFENSE_CODE (DISTRICT REPORTING_AREA SHOOTING YEAR MONTH DAY_OF WEEK HOUR
1152056250 111 Al 112 N 20157 ‘Wednesday 112
1162064334 111 AL NA N 20168 Wednasday |18
1172041830 11 A1 124 Y 2017{5 saturday 2
1172068628 1111 A1 122 Y 2017 8 sunday 0
1182026852 111 A1 61 N 2018{4 Tuesday 22
1182071662 i1l ‘A15 37 N 12018 59 Thursday 3
1152078371 111 a7 24 N 120159 Sunday 10
1162002573 ‘111 A7 16 ¥ 201611 Sunday 1
1162022418 111 AT 14 ¥ 201613 Tuesday 22
62047273 1l AT N 201616 Wednesday 8
1162066422 111 a7 N 20168 ‘Wednesday |6
1162104752 111 a7 NA N 2016 12 saturday 22
1172102399 111 A7 35 ¥ 2017112 sunday 16
M postoncimeinfo T3 ST e A T . B

criminal_offense_info.csv

OFFENSE_CODE OFFENSE_CODE_GROUP N - |UCR_PART
111 Homicide _ _ [Part One
112§Man5_l§|ug_hter EOth_er
121§Manslaughter _ _ Other
123 :Manslaughter Other
301 Robbery : . .. |PartOne
311 Robbery .. |PartOre
315 Robbery | - Partone
334/ Robbery ~ [partOne
SBSERobbew - Part One

W] criminal_offense_info %3 7T T U T g

For selected variables in the Boston crimes dataset, the program must generate and output a token

frequency table and a summary of statistics similar to figure shown below. The variables of

Page 4 of 15

interest are: 1=OFFENSE_CODE; 2 = DISTRICT; 3 = SHOOTING; 4 = YEAR; § = MONTH,;
6=DAY_OF_WEEK; 7 =HOUR). For example, the figure below shows the summary frequency
table and summary statistics for the YEAR variable.

Percent
16.3 %
3.2 %
30.8 %
22.7 %

Frequency: 53392 Prob: 16.3 %

MAXIMUM FREQUENCY RECORD:
value: 2017 Frequency: 188938 Prcb: 3.8 %

SECTION A
(Compulsory — Answer all questions)

QUESTION 1 — 40 marks
Create a new visual studio C++ project called S<yourid> and copy the code provide in ANNEX
A into the main source file. Based on the definition of TokenCount record/structure provided in
ANNEX A, and assuming all token frequency tables are declared as a list of token count records,
write suitable code to perform the following tasks which will lead to a possible solution to the
given problem. Where possible, call other functions already defined or provided in ANNEX A.
(a) Write a function that takes a token frequency table as an argument (list of token count
records) and computes the mean/average of all the token counts/frequencies. [5 marks]
(b) Write a function that takes a token frequency table as an argument, and returns a token
count record (a TokenCount) which has the minimum recorded count/frequency. {5 marks]
(c) Wiite a function that takes a token frequency table and returns a token count record which
has the maximum recorded count/frequency. [5 marks]
(d) Complete the missing code in the funciion showToken¥FrequencySummaryStats provided
in ANNEX A. [S marks]
(e) Run the main statements provided in ANNEX A and verify that the sample frequency table
and summary statistics are displayed. The getSampleTokenFrequencyTable [unction
generates a random frequency table and is provided in ANNEX A. Generate results for
DAY_OF_WEEK, take a screen shot and save results in a file called yourid_QI_e.png
Save this file in your test folder. [5 marks]

Page 5 of 15

(f) Modify the displayTokenFrequencyTable function such that it displays the total
frequencies and probabilities at the end of the frequency table as shown in sample output
below. You will note that the probability column may not add up to 100%. How is that

possible, and how can it be corrected? [5 marks]

B3 C\Users\HPAD esktop\TEACHING 2020,C3C213_AUGUST_20TNEXAM_ 2019 20¢0\Dec20195ampleS.,. = 0

o NS CSoSoTOSSETS SRR

Percent

16.0 %

SRS L 2 g e e e o e e e g

(g) Explain how the displayTokenFrequencyTable function could be modified such that it
displays the OFFENSE CODE GROUP and UCR_PART in addition to the
OFFENSE_CODE value, frequency and probability as shown in sample below. Write the

pseudocode for the revised function. [10 marks]

#1 CAUsers\HP\Desktop\ FEACHING 202RCSC215 AUGUST_0TNEKAH 2019 Joct\Dec209SampleSol vi\Debug\Dec2SampleSo.. — O X

(ffense_Group UCR_Part Percent
Counterfeiting Part Two 0.8
{ounterfeiting Part Two 8.1
Fraud Part Two 8.3
Fraud Part Tup 2.3
Confidence Games Part Tug 8.5
fraud Part Twp 0.7
Fraud Part Tug 8.2
Fraud Part Two 6.4
Homicide Part One 8.4
Manslaughter Other 0.5
tnbezzlement Part Tuo 0.4
Other _ 8.9

| TR 3R 3R IR BR IW € SR IR oW aR o€

Page 6 of 15

X

SECTION B
(Answer only one(1) question from this section)
QUESTION 2 - 40 marks
(a) Whereas the testing code in Question 1 uses a randomly generated token frequency table that
is generated using the getSampleTokenFrequencyTable, we instead want to extract the
token count information from the Boston crime dataset. Therefore,

0 write a pseudo code for a function that takes two arguments (Boston crime CSV file
and a field selector integer value) and extracts all token count of the selected field
from the given Boston crime file to a token frequency table., For instance, the
Bostoncrimeinfo.csv file contains 9 fields but we want to generate frequency tables
for only the following fields of interest; OFFENSE_CODE, DISTRICT,
SHOOTING, YEAR, MONTH, DAY OF WEEK and HOUR. We shall reference
these fields as 1, 2, 3,4, 5,6 and 7 respectively. For instance, when the field selector
=1, the function extracts only the OFFENSE_CODE labels to a token frequency
table. The same applies to ali the other fields. The function must return a list of token
counts. [10 marks]

(i) Based on your pseudo code from (i) above write a function called
extractTokensFromBCDFile. All fields are to be treated as strings (labels) not
numbers. [20 marks]

Test your functions using the first version of the displaySelectiveAnalysis function

provided in ANNEX A.[remove comment first]. To save time, consider using the smaller

train_bostoncrimeinfo.csv dataset. The function can be called in a main function similar to

example that follows (if necessary, you can change function names).

int_tmain(int argc, _TCHAR* argv(])

{ {ITesting
int fieldSelector = 4, /by YEAR
displaySeEectiveAnalysis(std::cout, fieldSelector);
return 0;}

(b) Rewrite the displaySelectiveAnalysis function such that it takes the name of any file as an
additional argument. The code is the same as in the earlier version, except this version can
read from the provided filename (i.e. bedFilename) instead of only from
train_bostoncrimeinfo.csv. Test your revised version of the function as shown below. You

should expect to get the same result as in (a). [5 marks]

int _tmain(int argc, _TCHAR* argv(l)
{ /Testing

int fieldSelector = 4; /lby YEAR

char* bedFilename = "train_bostoncrimeinfo.csv', Mirain dataset
displaySelectiveAnalysis(bcdFilename, std::cout, fieldSelector),;
return 0;}

Page 7 of 15

(c) Using the revised version of the displaySelectiveAnalysis function (from (b) above),
generate results for SHOOTING variable from the larger boston crime bostonerimeinfo.csy
file. Take a screen shot and save results in a file called yourid_Q2_e.png. Save this file in

your test folder. [5 marks]

QUESTION 3 — 40 marks

Based on the code obtained in question 1 or 2, change the test

code in the main function such that it uses an interactive menu-
based user interface. The program must repeatedly display the
menu until the exit option is chosen. Write the pseudo code for [
your main function in the answer folder. You can fest you
menu system using a token frequency table gencrate by the

extractTokensFromBCDFile from question 2 or the

getSampleTokenFrequencyTable used in question 1.

e Main Menu Option 1 — The Full Analysis option
writes a report to a text file, say full_report.txt,
containing the analysis (token frequency tables and
summary statistics) for each of the seven fields of
interest (OFFENSE_CODE, DISTRICT,
SHOOTING, YEAR, MONTH, DAY_OF_WEEK
and HOUR). In short, the displaySelectiveAnalysis

function is called repeatedly with field selector values

from 1 to 7.

s Main Menu Option 2 — The Selective analysis option in-furn presents a selective
submenu as shown in the figure. When options 1 to 7 are selected, the
displaySelectiveAnalysis function is called to display (on the screen/standard output) a
corresponding token frequency table and summary statistics. Option 8 returns control to
the main menu

e Option 3 - exits the program

[pseudocode(10) + correct interface(30) = 40 marks]

Page 8 of 15

QUESTION 4 — 40 marks
(a) In your test folder, create a windows forms application called Yourld_Q4_GUL
(b) Design a graphical user interface (GUI) that allows the user to view frequency tables and
summary statistics for the Boston crime dataset. The design should be similar to the
figure shown below. The default field selector should be 4 (YEAR) and the results should
be similar to the figure shown below. However, values may not be the same if foken

frequency table is randomly generated. [10 marks]

HCases Percent
25 102%
63 248%
76 297 %

A 3555

- Show Summary Statistics:

(c) Based on the code provided in ANEX A, and sample token frequency tables generated
using the getSampleTokenFrequencyTable function, add event handlers for each of the
buttons as explained befow. You will need to place some of the code provided in
ANNEX A into an appropriate header (.h) files in the project.

[25 marks]

Button Event handling

When the user clicks the Show Token Frequency Table, the frequency
table for the selected field must be displayed on the display box on the
right. The code is similar to the statement in the

display TokenFrequencyTable function provided in ANNEX A, except
that output is written to the display box instead of an output stream.

When the user clicks the Show Summary Statistics button, the summary
} statistics for the selected field must be displayed on the dispiay box on the

right. The code is similar to the statement in the
showTokenFrequencySummaryStats function provided in ANNEX A,
except that output is written to the display box instead of an output stream.

Note: The two buttons may not produce same results since the token [requency tables are randomly
generated -- Reading the tokens from a file as in question 2 can resolve this problem.

Page 9 of 15

ANNEX A:

(This code is provided in the data folder: EXAM2019_CSC213_DATA_ANNEX_A)

/IANNEX A CODE -

HNOTE : DOCUMENTATION COMMENTS REMOVED TO REDUCE NUMBER OF PAGES

#nclude "sidafx.h"
#include <iostream>
#include <fstream>
#include <sstream>
#tinclude <iomanip=>

Hneed lo include list STL
#include <list>
#include <iterator>

{1 need to manupulate string using algoritms
#include <string>
#include <algorithm>

* USEFUL STRUCT/FUNCTION DEFINITIONS *

wdk A ek k bk kKA & IR R R KRR RAR K

}**vnu-n * * W L vk Wk # *#

* Record/structure definition to store loken count information

AR NI *akAK HFRHHR KL & * ek kh 3 ® RakE kK |

struct TokenCount{
sid::sfring Value;
int Frequenacy;
double Prob;

3

void initTokenCaunt (TokenCount& TC, std::string val="", int freq=0, double prob=0.0)

TC.Value = val;
TC.Frequency = freq;
TC.Prob = prob;

}

std:ostream& operator<< {std:.ostream& os, TokenCount TC)

{

05 << "Value: * << TCValue
<< "\t Frequency: " << TC.Frequency
<< "\ Prob: * << TC.Prob <<" %"
<< gtd::endl;

return os;

}

bool operator<(const TokenCount& Ihs , const TokenCount& rhs) {
return {lhs.Value < rhs.Value) ; // compares token records by Value field

}

int gefTokenFrequency TableSize(std: tist<TokenCount> TokenFrequencyTahle)

{
} -

void displayTokenFrequencyTable(std::list<TokenCount> TokenFrequencyTable,
std::ostream& os)
{

return TokenFrequencyTable.size();

Hloop through afl Token Count records in the Token Freguency Tabies
Ji and write values 1o an output siteam
os<<std:lefi<<std::setw(60)<<"Value"<<std: :setw(15)

<<"#Cases" <<std::setw(5)

for{std: list<TokenCount>iterator it = TokenFrequencyTabte.begin(},

<<"Parcent”" << sid:.endl,

Page 16 of 15

it 1= TokenFrequencyTable.end(); it++)
os<<sid: selw(B0)<< ii->Value
<< std::setw{15)<< it->Frequency
<< std:fixed << std::selw(B) << std::setprecision(1)
<< jt->Prob << "%"<< gtd::endl;

void displayReportHeader (std:.ostream& os, int fieldSelector=1}

PR — S — = P L " << stduendl;
0s << "BOSTON CRIME ANALYSIS BY @ "

if (fieldSelector == 1)
0s << *OQFFENSE_CODE" << std:endi;
else if (fieldSelector == 2)
03 << "DISTRICT" << std::endl;
else if (fieldSelector == 3)
o0s << "SHOOTING" << std::endl;
else if (fieldSelector == 4)
0s << "YEAR" << sid::endl;
else if (fieldSelector == 5}
08 << "MONTH" << std::endl;
else if (fieldSelector == 8)
08 << "DAY_OF_WEEK" << std::end;
else if (fieldSelector == 7)
0s << "HOUR" << std::endl;

else
os << "INVALID FIELD SELECTED" << sid::end|;

08 << "m=== === ===" << gid::endl;

}
int FieldSelectorwidih (int fieldSelector=1)

if (fieldSelector == 1)/ OFFENSE_CODE;

return 15;

else if (fieldSelector == 2) i DISTRICT;
return 10;

else if (fleldSelector == 3) {f SHOOTING,;
return 10;

else if (fieldSelector == 4) /f YEAR;
return 10;

else if (fieldSelector == 5) // MONTH;
return 10; .

else if (fieldSelector == 8) // DAY_OF_WEEK;

return 15;

else if (fieldSelectar == 7) // HOUR;
return 10,

alse
return 20;

}

void displayTokenFrequencyTable(std:list<TokenCount> TokenFrequencyTable,
sid::ostreamd. os, int fieldSelector=1)
{

{loop through all Token Count records in the Token Frequency Tables
/ and write values to an oufput stream
os<<std:left<<sid::setw(FieldSelectorwidth{field Selector)) <<"Value'<<std::setw(15)
<<"#Cases" <<std::setw(5)
<<"Parcent” << std::endf;
for(std:list< TokenCount=:iterator it = TokenFrequencyTable.begin();
it I= TokenFrequencyTable.and(); it++)
os<<std::setw(FieldSelectorWidth(fieldSelector))<< it->Value
<< sid:setw(15)<< it->Frequency
<< std::fixed << sid::selw{5) << std::sefprecision{1)
<< it->Prob << "%"<< stduendl;

}

void displayPleaseWaitText (int fieldSelector, char® inputTextFilename="")

Page 11 of 15

std::cout << "extracting ",

if (fieldSelector == 1)
std::cout << "OFFENSE_CODE" << std:;endl;
else if {fieldSelector == 2)
sid::cout << "DISTRICT" << std::end];
else if (fieldSelector == 3)
std::cout << "SHOOTING" << sid::endl;
alse if (fieldSelector == 4)
stdrcout << "YEAR" << sid::endl;
else if (fieldSelector == 5)
std:cout << "MONTH" << std::endl;
elseif (fieldSelector == 6)
std::cout << "DAY_OF WEEK" << std::endl;
else if (fieldSelector == 7)
std::cout << "HOUR" << std::endl;
else
std::cout << "UNKNOWN FIELD " << std::endi;

std::cout << "tokens from " << inputTextFilename << " << " text file ¥ << sid::endl;
std:icout << ".... PLEASE WAIT" << std:iendl << std:endl;

int getTotalTokenCount (std::list<TokenCount> TokenFrequencyTable}
{ int sum =0,
for(std: list< TokenCount>iterator it = TokenFrequencyTable.begin(); it 1= TokenFrequencyTable.end(); it++}
sum = sum + it->Frequency;

return sum,
}
double calculatePercentage {int count , int total)
{
refurn count*1.0/total*100;
}

void evaluateTokenProbability (std:list<TokenCount>& TokenFrequencyTable)
{
int totalCount = getTotalTokenCount (TokenFrequencyTable);
for (std:list<TokenCount>iterator it = TokenFrequencyTable.begin(); it I= TokenFrequencyTable.end(); it++)
it->Proh = calculatePercentage (it->Frequency , totalCount);

}

void showTokenFrequencySummaryStats(std::list<TokenCount> TokenFrequencyTable, std:.ostreamé os)

{

0s << "mSUMMARY STATISTICS " << std:endl;

05 €< e M 2 std e,

0s << "UNIQUE TOKEN COUNT = "<<". ADD CODE HERE" << std::endl;
os << "MEAN FREQUENCY = "<<"...ADD CODE HERE" << std..end};
05 << "MINMMUM FREQUENCY RECORD:" << std:endl,

os << "\ << " ADD CODE HERE" << std:endl;

08 << "MAXIMUM FREQUENCY RECORD:" << sid::endl;
08 << "\t" << ", ADD CODE HERE" << std:endl;

}

'[J(
void displaySelectiveAnalysis(std::ostream& os, int fieldSelector=1)

displayReportHeader(ps, fieldSeleclor);

stdulist<TokenCount> FT = extractTokensFromBCDFile ("train_bostoncrimeinfo.csv”, fiefdSelector),
evaluateTokenProbability(F F);

displayTokenFrequencyTable(FT, os, fieldSelector),

showTFokenFrequencySummaryStats{FT, os);

std::list<TokenCount> getSampleTokenFrequencyTable (int fieldSelector=2)
Page 12 of 15

fideclare list of token count
sid::list<TokenCount> TokenFrequencyTable;

switch (field Selector}
{
case 1 FOFFENSE_CODE
{ !declare token count record
TokenCount TC;

fislore site values in array

std::string Offense{] = {

S92 1217123 13017, 311","315","334","335","338",
“339" "349","351",“361","371","381","402","403","404" "4 13",
v423% "432" 511" #5620 621" "522" "527","630","640" ,"54 1",
"542" "B47" "660" "561%,"662" "611" "6 12","613","614","615",
"G16Y, 617" "618", 819" 623" "624" "627","629" "633","634",
"3803","3805" "3807","3810" "3811","3820","3821" "3830","3831"

b
for {int index = 0; index < 222; index++)
{
TC Value = Offense[index];
TC.Frequency = (rand(} % 99) + 1;//randomly generate frequency/cournt
TC.Prob =0,
TokenFrequencyTable.push_back(TC),
} Hend for loop
break;

} Hend case 1

case 2! /IDISTRICT

{ Hideclare token count record
TokenCaunt TC;

Hstore site values in array
Sld::Striﬂg DiStFiCiu - {HE18!||HD14II'IIBZH’|!A1 ",“AT”|"01 1 “|“D4"|"E13","83“,"(:6“."A1 5!!,||E5Il};
for {int index = 0; index < 12; index++)
{
TC Value = District{index];
TC.Frequency = (rand() % 99) + 1;/randomly generate frequencyfcount

TC.Prob =0;
TokenFrequencyT able.push_back(TC});
} flend for loop
break;
} #end case 2
case 3: //ISHOOTING
{ /ideclare token count record
TokenCount TC;

Jistore shooting flags values in array
std::string SHOOTIN_FLAG[} = {"N", "Y'}
for {int index = 0; index < 2; index++)
{
TG Value = SHOOTIN_FLAG{index];
TC.Frequency = (rand() % 99) + 1,/frandomly generate frequencyicount

TC.Prob =0;
TokenFrequencyTable.push_back(TC);
} ffend for loop .
break,
}iend case 3

case 4: /IYEAR

{ /tdeclare token count record
TokenCount TC;
far {int year = 2015, year <= 2018, year++)
{

”k****:*ﬁ*x*fm*a—kw*x**********

Heonvert year int to string
std::ostringstream stream;
stream << year,

std::string year_str = stream.sir(};
l,l' & ki fekhw

Page 13 of 15

TC.Value = year_sir;
TC.Frequency = {rand() % 99) + 1,/frandomly generate frequency/count

TC.Prob =0;
TokenFrequencyTatle push_back(TC},
} fiend for loop
break;
} flend case 4

case 5: /IMONTH
{ #declare token count record
TokenCount TC;
for {int monthNumber = 1; monthNumber <= 12; monthNumber++}

{

”n R A K R

fconvert monthNumber int te string

std::ostringstream stream;

stream << monthNumber;

std::string monthNumber_slr = stream.str();

’l Rk kA kAR AN RAR KA XAEER AL WAL Ad

TC.Value = menthNumber_str;

TC.Frequency = (rand() % 99) + t://randomly generate frequency/count

TC.Prob =0,
TokenFrequencyTable.push_back(TC);
} Hend for loop
break;
}/fend case 5

case 6: /DAY _OF_WEEK
{ Ifdeciare token count recard
TokenCount TC;

Ifstore day of week values in array .
std:string WeekDay[] = {"Sunday", "Monday", "Tuesday", “Wednesday", "Thursday"”,
"Friday","Saiurday"};

for (int index = 0; index < 7; index++)

{
TC.Value = WeekDay[index];)
TC.Frequency = {rand{) % 99) + 1;/frandomly generate frequencylcount
TC.Prob =0;
TokenFrequencyTable.push_back(TC);
} flend for loop :
break; :

}ifend case 6

case 7: //HOUR
{ fideclare token count record
TokenCount TC;
for {int hour = 0; hour <= 23; hour++}

{

llk* LTS * AR

feonvert hour int to string

std::ostringstream stream;

stream << hour;

std::string hour_str = stream.str();

hl**ki‘ﬁ****i‘***ﬁﬁ-***ﬁt*ﬂtk*i*t

TC.Value = hour_slir;

TC.Frequency = (rand{) % 99) + 1,/frandomly generate frequency/count

TC.Prob =0;

TokenFrequencyTable push_back(TC);
1 Hend for loop

break;

Yiend case 7

} /fend switch
{sori and return list of token records
TokenFrequencyTable.sort();
return TokenFrequencyTable;

Page 14 of 15


~~~~~~ END STRUCT/ FUNCTION DEFINITIONS rerersssssstasssssinssy

/ SAMPLE MAIN
int _tmain{int arge, _TCHAR* argv[l)

{ifield selector

!
if 1 = OFFENSE_CODE; 2 = DISTRICT; 3= SHOOTING; 4 = YEAR,;
5=MONTH, 6= DAY_OF_WEEK; 7 = HOUR;

RERFRRAR]

int fieldSelector = 4;

Higenerate sample frequency table
sld-list<TokenCount> FT = getSampleTokenFreguencyTable (fieldSelector);

{fevaluate probabilities and disptay again
evaluateTokenProbability(FT);
displayReportHeader(std::cout, fieldSelector);
displayTokenFrequencyTable(FT,std::coul feldSelector),

fishow token frequency stais
showTokenFrequencySummaryStats(F T std::cout);

system ("pause”);
return 0;

}

Page 15 of 1S




