UNIVERSITY OF ESWATINI

Department of Computer Science

NOVEMBER/DECEMBER MAIN EXAMINATION

COURSE TITLE

: THEORY OF COMPUTATION

COURSE CODE : CSC211

TOTAL MARKS

:100

DURATION OF EXAM : THREE (3) HOURS

NUMBER OF EXAM PAGES: 6 (includes cover page)

This paper may not be opened until permission has been granted by the invigilator.

Answer all questions

QUESTION ONE {15 marks}

True/False questions: Indicate whether the statement is true or false.

1.1)	A language is called an irregular language if some finite automaton recognize	
,		{1 mark}
1.2)	The class of regular languages is closed under the union operation.	{1 mark}
1.3)	The class of regular languages is not closed under the star operation.	{1 mark}
1.4)	A language is regular if and only if some regular expression describes	
		{1 mark}
1.5)	If a language is described by a regular expression, then it is irregular.	
1.6)	If a language is irregular, then it is described by a regular expression.	
1.7)	A language is context free if and only if some pushdown automaton	
		{1 mark}
1.8)	.8) If a language is context free, then some pushdown automaton does n	
	recognizes it.	{1 mark}
1.9)	If a pushdown automaton recognizes some language, then it is conte	
		{1 mark}
1.10)	The class of DCFLs is not closed under complementation.	{1 mark}
1.11)	A deterministic context-free grammar is not a context-free gramma	r such that
	every valid string has a forced handle.	{1 mark}
1.12)	An end marked language is generated by a deterministic context-free gramma	
	and only if it is deterministic context free.	{1 mark}
1.13)	Every DCFG has an equivalent DPDA.	{1 mark}

1.14) Call a language Turing-recognizable if some Turing machine recognizes it.

{1 mark}

1.15) A language is Turing-recognizable if and only if some nondeterministic Turing.

machine recognizes it. {1 mark}

QUESTION TWO

{33 marks}

2.1) Let M be the Deterministic Finite Automata (DFA) shown below.

Provide a formal description of M.

{6 marks}

- 2.2) Assume an alphabet Σ that is $\{0, 1\}$
 - a. Draw the *simplest* possible <u>DFA</u> (in terms of number of states and arcs) that describes the language of all strings that end in "00". {7 marks}
 - b. Draw the *simplest* possible <u>NFA</u> (in terms of number of states and arcs) that describes the language of all strings that end in "00". {7 marks}
 - c. Provide the regular expression that describes the language in part a.

{3 marks}

- d. Write the regular expression for the language accepting all the string which are starting with 1 and ending with 0, over $\Sigma = \{0, 1\}$. {3 marks}
- Draw the NFA that recognizes the language where w contains the substring 0101.Do this using 5 states and assuming a binary alphabet. {7 marks}

QUESTION THREE

{15 marks}

3.1) Convert the given NFA to DFA.

{10 marks}

- 3.2) The pumping lemma states that all regular languages have a special property and it can be shown that if a language does not have this property, it is not a regular language.
 - Provide a mathematical formulation of the pumping lemma.

{5 marks}

QUESTION FOUR

{27 marks}

4.1) Discuss the steps for converting a context free grammar (CFG) into Chomsky

normal form(CNF).

{7 marks}

- 4.2) A CFG is in CNF (Chomsky normal form) if all production rules satisfy one of a number of conditions. Name these conditions. {7 marks}
- 4.3) Convert the given CFG to CNF.

Consider the given grammar G1:

$$S \rightarrow a \mid aA \mid B$$

$$A \rightarrow aBB \mid \epsilon$$

$$B \rightarrow Aa \mid b$$

{7 marks}

- 4.4) Pushdown automata is a way to implement a CFG in the same way we design DFA for a regular grammar. A DFA can remember a finite amount of information, but a PDA can remember an infinite amount of information.
 - Provide a Context Free grammar that generates the language 00*1*. {3 marks}
- 4.5) Provide a context free grammar that generates $L = \{a^nb^m : n \neq m\}$ {3 marks}

QUESTION FIVE {10 marks}

The Turing machine was invented in 1936 by Alan Turing. It is an accepting device which accepts Recursive Enumerable Language generated by type 0 grammar. Briefly discuss the following:

5.1) The various features of the Turing machine: {5 marks}

5.2) Formal definition of a Turing machine {5 marks}