UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE

RESIT EXAMINATION

JANUARY 2019

TITLE OF PAPER: INTRODUCTION TO LOGIC

COURSE CODE: CSC201

TIME ALLOWED: 3 HOURS

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES:

- 1. All questions carry equal marks.
- 2. Question 1 is compulsory.
- 3. Answer any 3 Questions from Question 2 to Question 5.
- 4. Marks for each question are indicated in square brackets.
- 5. Show all your workings where necessary.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

(a) Define the following terms as used in logic.

[5]

- (i) Clause
- (ii) Literal
- (iii) Exclusive OR
- (iv) Contradiction
- (v) Combinational circuit
- (b) Draw the truth table of the following proposition.

[5]

$$P \wedge \vec{Q} \rightarrow \vec{P} \vee R$$

(c) From the truth table in (b) above, derive the DNF and CNF of the function.

[5]

(d) Draw the circuit of the following function using basic logic gates only.

[6]

$$\overline{ab.\bar{c}+(a+b)}$$

- (e) Convert the following to predicate logic statements.
 - (i) Some university students are government sponsored and some are self-sponsored.

[2]

(ii) All computer science study CSC101 and some computer science students study PHY211.

[2]

Question 2

(a) Use truth tables to prove the following

(i)
$$(P \lor Q) \to R \cong (P \to R) \land (Q \to R)$$

[5]

(ii)
$$(P \rightarrow Q) \land P \models Q$$

[4]

(b) Use laws of logical equivalence to prove the following equivalences.

(i)
$$(P \lor Q) \to R \cong (P \to Q) \land (R \to Q)$$

4

(ii)
$$(P \rightarrow Q) \leftrightarrow \neg (P \rightarrow Q)$$
 is a contradiction

[5]

- (c) Give advantages of using laws of logical equivalence over the truth table method to prove equivalences.
- [2]

(d) Give the premises $A \wedge B$, $A \rightarrow C$, $B \wedge C \rightarrow D$, prove D.

[5]

Question 3

(a) Use the Quine McCluskey method to minimize the following function.

[5]

$$f(a,b,c,d) = \sum (3,7,10,11,13,15)$$

(b) Draw the circuit of the reduced function in (a) above.

[4]

- (c) A digital parity checker takes in a bit input and checks the parity of the input. It returns 0 if the number of 1 is odd in the input and 1 if the number of 1s is even. The case where all inputs are 0s is a don't care condition. Implement the reduced circuit of the parity checker. [12]
- (d) Convert the following function to canonical SOP.

[4]

$$f(a,b,c) = ab + \bar{c}$$

Question 4

(a) Convert the following function to POS using laws of logical equivalence.

[4]

$$f(x, y, z) = \overline{(x + y)} + z$$

(b) Find the canonical POS and canonical SOP of the function in (a) above and represent them in shorthand form.

[10]

(c) Explain the difference between a half adder and a full adder.

[2]

(d) Use the resolution rule to prove the following.

[5]

[4]

Premises:

$$(p \land q) \lor r$$

$$r \rightarrow s$$

Conclusion:

pvs

(e) Write the following statement in predicate logic syntax using the universal quantifier only.

Everyone has a male and female parent.

Question 5

(a) Define a predicate model.

[3]

(b) Write the following statement using predicate logic syntax.

[4]

Anyone who loves everyone loves themselves.

(c) Use the K-map method to simplify the expression.

[7]

$$f(w,x,y,z) = \overline{w} \cdot \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{w}x\overline{y}z + \overline{w}xyz + wx \cdot \overline{y} \cdot z + w \cdot \overline{x} \cdot yz + wxyz$$

(d) Implement the circuit of the reduced expression in (c) above using NAND gates only.

[6]

(e) Explain how quantifier negation can be used to eliminate the two quantifiers in an expression. Use examples in your explanation. [5]