
•

Title of paper

University ofEswatini

Department of Computer Science

Final Main Examination: December 2018

: Computer Programming II

Course Number : CSC213/CS244

Time Allowed : Three (3) hours

•

This paper may not be opened until permission has been granted by the invigilator

Page 1 ofll

•

INSTRUCTIONS
1. Answer all questions in section A.

2. Answer only one (1) question in section B.

3. This exam consists of 11 printed pages including the cover page.

4. The Exam user _id, password, tree, context and server name will be provided by the chief

invigilator.

5. Read the complete question paper carefully before starting to work on the problem .

6. Write pseudo codes (hand-written) in the provided answer folder.

7. Submit written answer folder and zipped project folder

8. Use the last 10 minutes to check your submissions

9. The names of all your files(project, source file and output files) should have following

format

S------(Proj ect N arne)

S------.cpp (source file)

S------. TXT (data files)

The dashes in file names are the six digits of your UNESWA student identity number.

SPECIAL REQUIREMENTS:

1. For each student, a standalone PC with working Visual Studio 2010 C++ compiler.

2. Students should not have access to the internet.

ANSWER FORMAT
1. Where required, write (in your answer folder) a detailed pseudo-code.

2. Compile and test your code. Make sure you submit code with no syntax errors. Where

necessary comment statements that have syntax errors.

3. Provide sufficient comment in your source code.

4. Output from your program must be properly formatted .

•
DATA

1. The required data text files, and ANNEX_ A source files, are stored in the folder

EXAM2018_CSC213_DATA_ANNEX and will be provided by the chiefinvigilator.

2. Except where instructed, the data files and the ANNEX source files should not be

modified. However, where necessary content can be used in your program.

Page 2 ofll

•

PROBLEM:

The task is to design a program which can be used to extract and analyse information about the

causes of death from three separate files (CauseOIDeathlnfo.txt, CauseData.txt and

SiteData.txt). The data is based on verbal autopsy (VA) interviews contributed by fourteen

different Health Demographic Surveillance System (HDSS) sites in sub-Saharan Africa and eight

sites in Asia. Each HDSS site is committed to long-term longitudinal surveillance of

circumscribed populations, typically each covering around 50,000 to 100,000 people. Households

are registered and visited regularly with a rate varying from once to several times per year. The

given files contain vital events which were registered at each of such visits, and any deaths

recorded are followed up with verbal autopsy interviews which can be used to inform probably

cause of death. T~e program must read, combine and extract required information from the three

files. The figure that follows shows sample content of the files.

CauseOfDeathlnfo. txt

siteco e year age group cau
KE021 2005 6 70
KE021 2005 6 2 18
BD011 2004 5 2 70
BD011 2004 5 2 23
BD011 2004 5 2 26
GH031 2006 7 1 18
KE021 2009 6 2 23
KE021 2009 6 2 70
KE021 2009 6 2 41
ZA031 2004 5 1 18
GH011 2006 7 1 31
GH011 2006 7 1 70
VN012 2006 7 2 70

Notes: This file contains 176834 records and may take a longer time to process. For testing
purposes, a smaller sample of the file called train_cod_data.txt (with only 1000 records) is
nrCHT1f1Pf1 in the data folder.

View Hetp
·ae·s~cr-,pt:ian······ -- -----·-·····-············· --· · ·· ·· ·· ··
Ol..Ol._Seps;s_(non-obstetr;c)
01.02_Acute_resp_;nfect_;ncl_pnE
01.03_HIV/AIDS_related_death
01.04_o;arrhoeal_d;seases
Ol..OS_Malar;a
Ol..06_Measles
Ol..07_Men;ng;t;s_and_encephal;t­
Ol..OS_&_l.0.05_Tetanus

Page 3 ofll

•

code
B0011
B0012
B0013
B0014
BF031
BF041
CI011
ET031
GH011
GH031
GM011
I0011
IN011
IN021
KE011
KE021
KE031
MW011
SN011
VN012
ZA011
ZA031

country
Bangladesh
Bangladesh
Bangladesh
Bangladesh ·
Burkina_Faso
Burkina_Faso
Ivory_cost
Ethiopia
Ghana
Ghana
The_Gambia
Indonesia
India
India
Kenya
Kenya
Kenya
Malawi
Senegal
Vietnam
south_Africa
South_Africa

SiteData.txt

name
ICOOR-B_:_Matlab
ICOOR-B_:_Bandarban
ICOOR-B_:_Chakaria
ICOOR-B_:_AMK
Nouha
ouagadougou
Taabo
Awlaelo
Navrongo
oodowa
Farafenni
Purworejo
Ballabgarh
vadu
Ki 1 i fi
Kisumu
Nairobi
Karonga
Bandafassi
Fi 1 abavi
Agincourt
Africa_centre

For each of the given fields in the cause of death text file (sitecode, year, agegroup, gender and

causecode), the program must generate and output a token frequency table and a summary of

statistics similar to figure shown below. The example given below is for the year field values;

Page 4 ofll

•

SECTION A

(Compulsory- Answer all questions)

QUESTION 1 - 45 marks

Based on the definition of TokenCount record/structure provided in Annex A, and assuming all

token frequency tables are stored as a ,list of token count records, [for instance

std::list<TokenCount> TokenFrequencyTable] , write suitable code to perform the following

tasks which will lead to a possible solution to the given problem .

(a) Write a function to calculate the probability of a token. The function only takes 2 integer

numbers as arguments, the frequency/count of a specific token and total count of all tokens,

and returns the ratio of these two numbers expressed as a percentage. [3 marks]

(b) Write a function that takes a token frequency table (list of token count records) as an

argument and computes the sum of all the token counts/frequencies. [5 marks]

(c) Using the function obtained in (b), write a function that takes a token frequency table (list of

token count records) and computes the mean/average of all the token counts or frequencies.

The mean is simple the sum of all token counts divided by the number of unique tokens.

[5 marks]

(d) Write a function that takes a token frequency table (list of token count records) as an

argument, and returns the standard deviation of the token counts or frequencies. Note that

given a list of n values, say (Xv Xz, ... , Xn), with the mean/average of the values

denoted as .X, the standard deviation, denoted s, can be calculated using the following

[12 marks]

(e) Write a function that takes a token frequency table (list of token count records) as an

argument, and returns the minimum recorded count/frequency. [5 marks]

(f) Write a function that ~kes a token frequency table (list of token count records) and returns

the maximum recorded count/frequency. [5 marks]

(g) Using the functions defined in previous tasks, complete the missing code in the function

showTokenFrequencySummaryStats provided in ANNEX A. [5 marks]

(h) Write a function called evaluateTokenProbability that iterates through all token records in

a token frequency table and calculates the token probability. This function uses the

probability function defined in task 1 above. Here is the suggested prototype for this

function.

void evaluateTokenProbability (std::list<TokenCount>& TokenFrequencyTable)

[5 marks]

Page 5 ofll

•

(i) Test your functions from previous tasks using a randomly generated frequency table as

shown in the main function example below. The getSampleTokenFrequencyTable function

generates a random frequency table and is provided in ANNEX A folder.

int _tmain(int argc, _ TCHAR* argv[])
{

}

II Testing functions using a randomly generated frequency table
std::list<TokenCount> FT = getSampleTokenFrequencyTable ();
displayTokenFrequencyTable(FT, std::cout);
std::cout << std::endl;
evaluateTokenProbability(FT);
displayTokenFrequencyTable(FT, std::cout);
showTokenFrequencySummaryStats(FT, std::cout);
system("pause");

QUESTION 2 - 25 marks

(a) Whereas the testing code in Question I uses a randomly generated token frequency table,

we instead want to extract this information from the cause of death text file. Therefore,

write a function called extractTokensFromCODFile that takes two arguments (a cause of

death text file and a field selector integer value) and extracts all tokens of the selected field

from the given cause of death text file to a token frequency table. For instance, the

CauseOIDeathlnfo.txt contains 5 fields namely: sitecode, year, agegroup, gender and

causecode which will be referencedas fields 1, 2, 3, 4 and 5 respectively. When the field

selector = 1, the function extracts only the sitecode labels to a token frequency table.

Similarly, when the field selector = 2, the function extracts only the year labels to a token

frequency table. The same applies to all the other fields. All fields are to be treated as

strings (labels) not numbers. The function must return a list of token counts. Write proper

pseudocode for this function. Here is a recommended prototype for this function:

std::list<TokenCount> extractTokensFromCODFile (char* codFilename, int fieldSelector)

Whereas the function reads all the field values from an input line, it only extracts to the

frequency table the app~opriate field value as per the field selector. For each new token, a

new token count record, with frequency = 1 and probability=O, is created and inserted into

the frequency table. For an existing token, the frequency count is incremented by 1.

[pseudoce(8) +actual code(12) = 20 marks].

(b) Test your functions using the first version of the displaySelectiveAnalysis function

provided in ANNEX A. The function can be called in a main function similar to example

that follows (if necessary, you can change function names).

int _tmain(int argc, _ TCHAR* argv[])
{ //Testing

int fieldSelector = 4; //by gender
d isplaySelectiveAnalysis(std:: cout, fieldSelector);
return 0;}

[5 marks]

Page 6 ofll

•

For testing purposes and in order to save time, test your code using the smaller sample

train_cod_data.txt input file. That is use the first version of the displaySelectiveAnalysis

function. You will eventually need to test your code using the much bigger

CauseOfDeathlnfo.txt input file, and may need the second version of the

displaySelectiveAnalysis function which allows you to specify any filename. The sample

results shown in the figure above are based on the bigger CauseOfDeathlnfo.txt text file

SECTIONB

(Answer only one(l) question from this section)

QUESTION 3 - 30 marks

Based on the code obtained in question 2, change the test code

in the main function such that it uses an interactive menu-based

user interface. The program must repeatedly display the menu

until the exit option is chosen. Write the pseudo code for your

main function in the answer folder.

MAIN MENU
1. Full analysis
2. Selective analysis
3. Exit.

Enter your choice (1-3);

• Option 1 - The Full Analysis option writes a report SELECTIVE SUB MENU

to a text file, say full_report.txt, containing the

analysis (token .frequency tables and summary

statistics) for each of the five fields (sitecode, year,

age group, gender, and causecode). In short, the

displaySelectiveAnalysis function is called repeatedly

with field selector values from I to 5.

1. Cases per Site
2. Cases per Yeat
3. Cases by Age Group
4. Cases by Gender
5. Cases by Cause ofDeath
6. Return to main menu

Enter your choice (1-6) ;

• Option 2 - The Selective analysis option in-tum presents a selective submenu as shown

in the figure. When options 1,2,3,4 and 5 are selected, the displaySelectiveAnalysis

function is called to display (on the screen/standard output) a corresponding token

frequency table and summary statistics. Option 6 returns control to the main menu

• Option 3 - exits the program

[pseudocode(IO) +correct interface(30) = 30 marks]

Page 7 ofll

QUESTION 4- 30 marks

(a) Define a site record structure, called Site, to store site information. That is the structure

must have fields for the site code, country and name [3 marks]

(b) Define a function called initSiteData that initializes a site record. The function takes as

an argument, a site record (as described above), and values for each fields. The function

simple sets the record fields to the given values. Here is a suggested prototype of the

function. [4 marks]

Here is a le ofhow the function could be used and tested in the main function
Sample testing code

Site S; //declare site record
initSiteData (S, "KE021", "Kenya","Kisumu"); //initialize site record
std::cout << S.code << "\t" << S.country << "\t" << S.name << std::endl;

Expected result

(c) Write a function, called getSiteData, that extracts specific site details from a given site

data text file. The function arguments include the site code and the name of the text file

containing the site information, say SiteData.txt. It returns a site record. In the example

below the site code is KE021. The function only extracts a single matching record from

the given site data text file. In your answer folder write the pseudocode for this function.

Here is a suggested prototype for the function: Site getSiteData (canst char* sitecode,

char* siteDataFilename)

[pseudocode(6) + actual code(14) =20 marks]
•

Here is a sample call to the function and expected results

std::string siteCode = "KE021";
SiteS= getSiteData (siteCode.c_str(), "sitedata.txt");
std::cout << S.code « "\t" << S.country « "\t" << S.name « std::endl;

Page 8 ofll

(d) Modify the displayTokenFrequencyTable function such that when the field selector (a

parameter for this function) is 1 (site), the function calls the getSiteData function to

display the site name in addition to the site code, frequency and probability. Modify the

displaySelectiveAnalysis function such that it calls the revised

displayTokenFrequencyTable function. The expected results when field selector =1 is

as shown below. [3 marks]

•

Page 9 ofll

ANNEXA:

(This code is provided in the data folder: EXAM2018_CSC213_DATA_ANNEX_A)

#include "StdAfx.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>

//need to include list STL
#include <list>
#include <iterator>

llstruct for storing token count
struct TokenCount{

};

std::string Value;
int Frequency;
double Prob;

II overload less than operator
bool operator<(const TokenCount& lhs, const TokenCount& rhs) {

return (lhs.Value < rhs.Value) ; II compares token records by Value field

//get token frequency table size = number of unique tokens
int getTokenFrequencyTableSize(std::list<TokenCount> TokenFrequencyTable)
{

return TokenFrequencyTable.size();

//display token frequency table
void displayTokenFrequencyTable{std::list<TokenCount> TokenFrequencyTable,

std::ostream& os)

//loop through all Token Count records in the Token Frequency Table
II and write values to an given output stream
os«std::left«std: :setw(1 O}«"Value"«std::setw(15)

«"#Cases" «std::setw(5)
<<"Percent" << std::endl;

for(std::list<TokenCount>::iterator it= TokenFrequencyTable.begin();
it!= TokenFrequencyTable.end(); it++)

os«std::setw(10)« it->Value
« std::setw(15}« it->Frequency
« std::fixed « std::setw(5) « std::setprecision(1)
<< it->Prob << "%"<< std::endl;

•

//display summary statistics
void showTokenFrequencySummaryStats(std::list<TokenCount> TokenFrequencyTable,

std::ostream& os)
{
os « "\nSUMMARY STATISTICS"« std::endl;
os << "--- " << std::endl;
os «"UNIQUE TOKEN COUNT = "«"ADD APPROPRIATE CODE HERE"« std::endl;
os «"MEAN = "«"ADD APPROPRIATE CODE HERE"« std::endl;
os «"STANDARD DEVIATION = "«"ADD APPROPRIATE CODE HERE"« std::endl;
os «"MINIMUM VALUE = "«"ADD APPROPRIATE CODE HERE"« std::endl;
os «"MAXIMUM VALUE = "« "ADD APPROPRIATE CODE HERE"« std::endl;
}

Page 10 ofll

•

//display report header
void displayReportHeader (std::ostream& os, int fieldSelector=1)
{

}

os << "\n==" << std::endl;
os «"CAUSE OF DEATH ANALYSIS BY : "·
if (fieldSelector ==1)

os « "SITE "« std::endl;
else if (field Selector ==2)

os «"YEAR OF DEATH"« std::endl;
else if (fieldSelector ==3)

os «"AGE GROUP AT DEATH"« std::endl;
else if (fieldSelector ==4)

os «"GENDER OF DECEASED"« std::endl;
else if (field Selector ==5)

os «"CAUSE OF DEATH"« std::endl;

os << "==" << std::endl;

//perform selective analysis from train_cod_data.txt -FIRST VERSION
void displaySelectiveAnalysis(std::ostream& os, int fieldSelector=1)
{

displayReportHeader(os, fieldSelector);
std::list<TokenCount> FT = extractTokensFromCODFile ("train_cod_data.txt",

field Selector);
evaluate TokenProbability(FT);
displayTokenFrequencyTable(FT, os);
showTokenFrequencySummaryStats(FT, os);

//perform selective analysis from any cause of death file -SECOND VERSION
void displaySelectiveAnalysis(char* codFilename, std::ostream& os, int fieldSelector=1)
{

displayReportHeader(os, fieldSelector);
std::list<TokenCount> FT = extractTokensFromCODFile (codFilename, fieldSelector);
evaluate TokenProbability(FT);
displayTokenFrequencyTable(FT, os);
showTokenFrequencySummaryStats(FT, os);

//get token frequency Table size
int getT okenFrequencyTableSize(std:: list<T okenCount> TokenF requency Table)
{

return TokenFrequencyTable.size();

1/function to generate sample frequency table for testing
std::list<TokenCount> getSampleTokenFrequencyTable ()
{

}

1/declare list of token count
std::list<TokenCount> TokenFrequencyTable;

//declare token count rectfd
TokenCount TC;
for (int year= 1992; year< 2012; year++)
{

}

//*****************************
//convert year int to string
std::ostringstream stream;
stream << year;
std::string year_str = stream.str();
//*****************************
TC.Value = year_str;
TC.Frequency = (rand() % 99) + 1 ;//randomly generated values
TC.Prob =0;
TokenFrequencyTable.push_back(TC);

TokenFrequencyTable.sort();
return TokenFrequencyTable;

/******************************* **** END ANN EX_ A ***I

Page 11 ofll

