UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

Supplementary Examination, July 2011

Title of paper: **OPERATING SYSTEMS**

Course numbers: CS442

Time allowed: 3 hours

Instructions: Answer any 5 out of the 6 questions. Each question carries 20 marks.

Question 1

- (a) Explain why it is essential for operating systems to provide memory abstraction. [4]
- (b) Draw a diagram of the components of the memory management unit (MMU) in a pure paging memory system, using labelled arrows to indicate the flow of data. In addition, describe the sequence of steps carried out by the MMU in address translation.
- (d) A paging memory system with pages of size 4 KB uses 16-bit virtual addresses.
 - (i) How many entries should be in the page table? [1]
 - (ii) Suppose that pages 0, 1 and 2 have page table entries of 2, 10, and 0, respectively. Assuming that all 3 of these pages are present in main memory, calculate the physical addresses corresponding to virtual addresses 0x09F0 and 0x170A. [4]
- (e) (i) A paged-segmented memory system has 2 KB page size and 32 KB virtual address space. Determine whether a program with 3 segments 9 KB text, 3 KB stack and 20 KB data would fit into the address space. [2]
 - (ii) Repeat question (i) assuming 1 KB page size. [2]

Question 2

- (a) Explain the problem of fragmentation that affects segmented memory systems. How does it arise, and what difficulty does it cause? In addition, explain how it may be overcome. [7]
- (b) Describe the sequence of steps required for address translation in paged-segmented memory systems. [5]
- (c) A small computer has 4 page frames and 8 pages of virtual address space. There are no pages in memory initially, and subsequently the following sequence of page accesses occurs:

- (i) What are the contents of main memory at the end of each access, assuming LRU page replacement policy? [4]
- (ii) Repeat question (i) assuming FIFO page replacement. [4]

Ouestion 3

(c)

(a)		Draw a state transition diagram of the process model. In addition, describe each state and transition shown.		
(b)	Distinguish between I/O bound and CPU bound processes. Which kind is more common in interactive systems?		[2]	
(c)	Describe the following scheduling algorithms: multiple queues and lottery scheduling.		[8]	
(e)	consis	A priority-scheduling kernel uses 2 levels of priority. Assume that the ready queue consists of 1 high priority process and 1 low priority process, and that each process needs 3 quanta of running time. How much time is left until the high priority		
			[1]	
(f)	A shortest-process-next scheduler uses an ageing coefficient (<i>a</i>) of 1/2. The first 4 run times of a program are 32, 24, 16 and 48 milliseconds, respectively. Calculate the predicted duration of the 5 th run.			
Question 4				
(a)	Define critical region and mutual exclusion.		[2]	
(b)	(i)	Define the operations on semaphores.	[5]	
	(ii)	A semaphore is shared by processes P1, P2 and P3. The semaphore is initialized to 1 and undergoes the following sequence of 8 operations:		
		P1 down, P1 down, P2 up, P3 down, P1 down, P2 up, P2 down, P3 up		
	(iii)	Give the semaphore's value and draw the queue of blocked processes at the end of each operation. Explain why it is impossible for the 3 rd operation in question (ii) to be:		
	(***)	P1 up.	[1]	

Describe the purpose of the following calls in the Posix threads package: *create, exit, join* and *yield*. [8]

- (a) Describe the following 2 alternatives for keeping track of free disk blocks: linked list and bitmap. In addition, explain the main advantage of each structure. [9]
- (b) Describe the purpose of the following system calls related to directories: Create, Readdir, Link, Unlink and Closedir. [5]
- (c) (i) Draw a labelled diagram of the structure of large files in Unix, including single-, double- and triple-indirect blocks. [3]
 - (ii) Work out the maximum size of a file in Unix, assuming 4 KB disk blocks. [3]

Question 6

- (a) Define the following terms:
 - (i) Character device.
 - (ii) Block device.
 - (iii) A disk partition.
 - (iii) Master boot record.

[4]

- (b) I/O software can be organized into 4 layers that are situated above the hardware layer. Draw a diagram of this layered structure and describe the purpose of each layer of I/O software.
- (c) A disk receives the following sequence of requests:

16, 14, 8, 30, 6, 25, 7

Assuming that the head is initially over cylinder 15, and that seek time is 4 msec per cylinder moved, calculate the total seek time under each of the following disk scheduling policies:

- (i) First come, first served.
- (ii) Shortest seek time first.
- (iii) Elevator, with head moving outward initially.

In addition, for each case, list the order in which requests are answered.

*** END OF QUESTION PAPER ***

[10]