UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

Supplementary Examination, July 2011

Title of paper: **COMPUTER ORGANISATION - II**

Course numbers: CS341

Time allowed: 3 hours

Instructions: Answer any 5 out of the 6 questions. Each question carries 20 marks.

This examination paper should not be opened until permission has been granted by the invigilator

(a) Write microinstruction code words for Mic-1's implementation of the IJVM IF_ICMPEQ instruction:

Assume that the microinstructions of IF_ICMPEQ are at successive addresses in the control store, and that the addresses of the following microinstructions are:

- 0x01: Main1
- 0xFF: F [9]
- (b) Determine whether or not the following Mic-1 microinstructions are valid (consider each line independently of the others). Explain the errors found in the invalid microinstructions.
 - 1. TOS = SP
 - 2. H = H + H
 - 3. MBR = 1
 - 4. H = TOS; MAR = MDR
 - 5. rd; wr
 - 6. if (N) goto Main1; else goto Main1

[6]

(c) Assuming that the current microinstruction in Mic-1 is a conditional branch, describe the sequence of steps by which the next microinstruction's address is determined. [5]

- (a) Describe the characteristics of a *shift register* and explain its purpose within the instruction fetch unit. [3]
- (b) How many clock cycles does Mic-3 take to execute IJVM's ISTORE instruction (given below)? Clearly show the microsteps executed in each clock cycle.

[10]

(c) Draw a labelled diagram showing Mic-4's 7-stage pipeline.

[7]

Question 3

- (a) Explain how each of the following might improve the performance of a microarchitecture:
 - (i) Branch prediction
 - (iii) Speculative execution

[6]

- (b) Define spatial and temporal locality and explain their relevance to caching. [4]
- (c) Draw a labelled diagram of a 2-way set-associative cache with 8 entries. Explain the work done in order to determine whether a given memory addressed is present in this cache.

 [6]
- (d) Distinguish between write-though and write-back caches.

[2]

- (e) A direct mapped cache has 32 lines. Each cache line holds 128 bytes. Given that memory addresses in this system are 16 bits long, work out:
 - (i) The length of the Tag field.
 - (ii) The line number corresponding to memory address 0xFACE.

[2]

- (a) Describe what is meant by Instruction Set Architecture (ISA). In addition briefly describe any 3 sections you would expect to see in an ISA specification document. [5]
- (b) Explain one advantage and one disadvantage of the ASCII system compared with Unicode. [2]
- (c) Define any 5 addressing modes.

[5]

- (d) Design an instruction set format for an architecture with a 21-bit instruction word. Each register operand must be encoded in 6 bits, and each address operand in 10 bits. There are 3 kinds of instructions:
 - 2 instructions take 3 register operands.
 - 6 instructions take 1 register operand and 1 address operand.
 - · 256 instructions take 1 address operand.

[8]

- (a) Explain how REPEAT-UNTIL and IF-THEN-ELSE control structures (provided by high level languages such as Pascal) can be written in IJVM assembly language. Give code examples in IJVM assembly language to illustrate your answer. [7]
- (b) (i) Outline the main steps carried out by a two-pass assembler. [7]
 - (ii) Describe the structure of the symbol table and explain how it is used for computing branch offsets. [6]

Question 6

- (a) Flynn's taxonomy identifies 4 kinds of computers: SISD, SIMD, MISD and MIMD.

 Describe the main characteristics of each group. In addition, classify clusters-of-workstations (COWs) and vector processors using Flynn's taxonomy.

 [8]
- (b) Draw diagrams of the following processor-interconnection topologies: star, tree, ring, grid and torus. In addition, state the diameter of each topology. [10]
- (c) State Amdahl's law and briefly explain what it tells us about the limits of parallel computer performance. [2]

Appendix – Microarchitecture & Instruction Set Datasheet

(Source: Andrew S. Tanenbaum, Structured Computer Organization, 5th ed., Prentice-Hall,)

Bits	9	3	3			8								9							3		4	
NEX	T_ADDRESS	JMPC	JAM	S L L 8	S F	F ₁	E N	E N	I N V A	-ZC	Н	OPC	TOS	CPP	LV	SP	PC	MDR	MAR	8 R⊔	READ	III-CXI	B bus	
	Addr		M.	~		_ Al	ĹŲ				_				č	•					~ ⁄ler	 n		

B bus registers

Q = MDR	5 = LV
.1 = PC	6 = CPP
2 = MBR	7 = TQS
3 = MBRU	8 = OPC
4 = SP	9-15 none

F	F ₁	ENA	ENB	INVA	INC	Function
0	1	1	0	0	0	Α
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	B
1	1	1	1	0	0	A+B
1	1	1	1	0	1	A+B+1
1	1	1	0	0	1	A+1
1	1	0	1	0	1	B+1
1	1	1	1	1	1	B-A
1	1	0	1	1	1	B – 1
1	1	1	0	1	1	-A
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
0	1	0	0	0	1	1
0	1	0	0	1	0	-1

Hex	Mnemonic
0tx0	BIPUSH byte
0x59	DUP
0xA7	GOTO offset
0x60	IADD
0x7E	IAND
0x99	IFEQ offset
0x9B	IFLT offset
0x9F	IF_ICMPEQ offset
0x84	IINC varnum const
0x15	ILOAD varnum
0xB6	INVOKEVIRTUAL disp
0x80	IOR
0xAC	IRETURN
0x36	ISTORE varnum
0x64	ISUB
0x13	LDC_W index
0x00	NOP
0x57	POP
0x5F	SWAP
0xC4	WIDE