UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

Main Examinátion, November 2010

Title of paper: COMPUTER ORGANISATION - II

Course numbers: CS341

Time allowed: 3 hours

Instructions: Answer any 5 out of the 6 questions. Each question carries 20 marks.

(a) Write microinstruction code words for Mic-1's implementation of the IJVM IOR instruction:

```
iorl MAR = SP = SP - 1; rd
ior2 H = TOS
ior3 MDR = TOS = MDR OR H; wr; goto Mainl
```

Assume that the control store addresses of the following microinstructions are:

- 0x01: Main1
- 0xF1: ior2
- 0x08: ior3 [5]
- (b) Mic-1 has 4 ways of determining the next microinstruction's address. Describe each of them in detail. Your answer must include at least the following:
 - Expected content of the JAM and NEXT_ADDRESS field.
 - · Method by which the MPC register is assigned.
 - Example of a microinstruction that uses the method. [15]

Question 2

- (a) Contrast between instructions, micro-instructions and micro-steps. [3]
- (b) Draw a labelled diagram of the main components of Mic-2's Instruction Fetch Unit. [4]
- (c) Mic-3's 3 buses are each equipped with a latch. Explain the reasons for dividing the data path into 3 sections in this manner. [3]
- (d) (i) Describe the main components of Mic-4's Decoding and Queueing Units.

 Illustrate your answer with diagrams. [5]
 - (ii) Describe the different ways in which Mic-4's Decoding and Queueing Units can interact with each other. [5]

- (a) Explain how each of the following can improve the performance of a microarchitecture:
 - (i) Cache memory
 - (ii) Out-of-Order execution and Register Renaming

[6]

(b) Describe the main kinds of inter-instruction dependency, and explain why dependencies are, in general, detrimental to high-performance in pipelined architectures.

[8]

- (c) Calculate the *average access time* of a two-level cache that has the following characteristics:
 - Level 1 miss rate: 10%
 - Level 2 hit rate: 60%
 - Level 1 access time: 5ns
 - Level 2 access time (after level 1 miss): 15ns
 - Main-memory access time (after level 2 miss): 60ns

[6]

- (a) Write the integer 255 in binary notation and in binary coded decimal (BCD). How does this example demonstrate the inefficiency of BCD? [2]
- (b) Discuss the advantages and disadvantages of *minimizing* the length of an instruction format. [4]
- (c) Design a *minimal* instruction format for encoding the following instruction set, assuming that operands are encoded in 2 bits:
 - 25 zero-operand instructions
 - 3 two-operand instructions

[6]

- (d) Design an instruction format for encoding the following instruction set into a 20-bit instruction word:
 - 16 zero-operand instructions
 - 16 single-register operand instructions
 - 32 two-operand instructions, with 1 resister and 1 address operand

Assume that the architecture has 4 registers and 2000 bytes of addressable memory.

[8]

Question 5

(a) Explain how FOR and IF-THEN-ELSE control structures (provided by high level languages such as Pascal) can be written in IJVM assembly language.Give code examples in IJVM assembly language to illustrate your answer.

[7]

(b) (i) Outline the main steps carried out by a two-pass assembler.

[7]

(ii) Describe the structure of the symbol table and explain how it is used for computing branch offsets. [6]

- (a) Contrast between each of the following pairs:
 - (i) Shared- and distributed-memory systems.
 - (ii) Loosely- and tightly-coupled systems.

[4]

(b) (i) Define degree and diameter of interconnection topologies.

[2]

- (ii) For high performance, is it more advantageous for diameter of a topology to be high or low? Explain. [2]
- (iii) A ternary tree interconnection topology is a kind of tree where each node (other than leaf nodes) has 3 children. The diagram below shows a ternary tree of size 13. Give the degree and diameter of this tree: [2]

- (iv) Explain the advantages and disadvantages of the ternary tree compared with the *ring* topology. [3]
- (c) Define *speedup* in parallel computing. In addition, explain the concept of linear speedup and give reasons why linear speedup is rarely attained in practice. [7]

*** END OF QUESTION PAPER ***

Appendix – Microarchitecture & Instruction Set Datasheet

(Source: Andrew S. Tanenbaum, Structured Computer Organization, 5^{th} ed., Prentice-Hall,)

B bus registers

0 =	MDR	5 = LV
1 =	: PC	6 = CPP
2 =	MBR	7 = TOS
3 =	MBRU	8 = OPC
4 =	SP	9-15 none

Fo	F ₁	ENA	ENB	INVA	INC	Function
0	1	1	0	0	0	Α
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1_	0	1	1	0	0	B
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A+B+1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B +1
1	1	1	1	1	1	B – A
1	1	0	1	1	1	B-1
1	1	1	0	1	1	-A
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
0	1	0	0	0	1	1
0	1	0	0	1	0	_1

Hex	Mnemonic
0x10	BIPUSH byte
0x59	DUP
0xA7	GOTO offset
0x60	IADD
0x7E	IAND
0x99	IFEQ offset
0x9B	IFLT offset
0x9F	IF_ICMPEQ offset
0x84	IINC varnum const
0x15	ILOAD varnum
0xB6	INVOKEVIRTUAL disp
0x80	IOR
0xAC	IRETURN
0x36	ISTORE varnum
0x64	ISUB
0x13	LDC_W index
0x00	NOP
0x57	POP
0x5F	SWAP
0xC4	WIDE