UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

MAIN EXAMINATION 2008

Title of paper: INTRODUCTION TO LOGIC

Course number: CS235

Time allowed: Three (3) hours

Instructions: Answer any five (5) of the six (6) questions.

Special requirements: The use of electronic calculators is forbidden.

This examination paper should not be opened until permission has been granted by the invigilator.

- a) With the aid of a complete truth table, determine whether or not the following propositions are consistent with each other:

 - ¬P

 - $P \Rightarrow Q$ $\neg (P \lor Q) \lor R$

[12]

b) By truth table, prove that *De Morgan's* law of logical equivalence is valid.

[4]

c) By truth table, prove that the following entailment is valid:

$$P \wedge (P \Leftrightarrow Q) \models Q$$

[4]

Question 2

a) Prove the following using the laws of logical equivalence:

b) Simplify the following proposition as much as possible using the laws of logical equivalence:

$$(P \lor \neg Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg (P \land Q) \Rightarrow R) \land (\neg (Q \land R) \Rightarrow \neg P)$$
[11]

By natural deduction from the following premises:

- P v R
- $R \Leftrightarrow \neg Q \wedge P$
- $P \wedge Q \Rightarrow \neg R$

... prove the following conclusions:

a) P

[8]

b) R ∧ ¬Q

[8]

c) $\neg P \Rightarrow S$

[4]

a) Define the function f (a,b,c) in disjunctive normal form:

a	b	c	f(a,b,c)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

[7]

b) Implement a circuit for the function g(a,b,c) using NOR gates alone:

$$g(a,b,c,d) = a + \overline{b} + c\overline{d}$$

[8]

c) Write the following numbers in 10-bit binary according to the twos-complement system:

i. 437

[2]

ii. -180

[3]

a) Minimize the function f (a,b,c,d) using a Karnaugh map:

$$f(a,b,c,d) =$$

$$abcd + \overline{abc}.\overline{d} + \overline{a.bcd} + \overline{a.cd}$$

Assume that the following inputs are impossible:

$$ab\overline{d}$$
, $\overline{a}.\overline{b}.\overline{d}$

[9]

b) Minimize the function g(a,b,c,d) using the Quine-McCluskey method:

$$g(a,b,c,d) =$$

$$abcd + \overline{a}bcd + \overline{a}.\overline{b}cd + \overline{a}b\overline{c}.\overline{d} +$$

$$\overline{a}b\overline{c}.\overline{d} + \overline{a}.\overline{b}c\overline{d} + \overline{a}.\overline{b}.\overline{c}.\overline{d}$$

[11]

Question 6

a) Distinguish between synchronous and asynchronous circuits.

[2]

- b) Draw complete circuit diagram of the following devices, showing all logic gates:
 - i. RS latch

[5]

ii. Full adder

[8]

c) Explain the 2 main advantages of the D latch over the RS latch.

[5]