UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

MAIN EXAMINATION 2008

Title of paper: DATA STRUCTURES

Course number: CS342

Time allowed: Three (3) hours

Instructions: Answer any five (5) of the six (6) questions.

This examination paper should not be opened until permission has been granted by the invigilator.

Question 1

a)	List and describe the operations of the stack ADT.	[5]
b)	Give an array based implementation of the stack ADT, including definitions of relevant data types.	[15]
Question 2		
a)	List and describe the operations of the queue ADT.	[5]
b)	Define the meaning of big-O notation.	[4]
c)	Write an algorithm that swaps the front and rear items of a given queue, leaving the items in between them unchanged. It may be assumed that the given queue contains at least 2 items.	
		[7]
d)	Analyse the big-O time complexity of the algorithm given in c).	[4]

Question 3

a) Describe in detail the Insert and Delete operations of the list ADT.

[4]

b) Write an algorithm that returns the size of a given list.

[5]

c) Write an algorithm that takes a list of numbers and an additional number (say x), and inserts x immediately after the last existing occurrence of x. If, however, x is not already in the list, it should be inserted at the end of the list.

[11]

Question 4

a) Write an algorithm that takes a list of numbers and deletes all its negative-number items.

[10]

- b) Analyse the big-O time complexity of the algorithm given in a), assuming that the given list is:
 - 1. array based
 - 2. linked-list based

[10]

Question 5

a) List and describe the operations of the binary tree ADT.

[10]

b) Write an algorithm that returns the size of a given binary tree.

[4]

c) Write an algorithm that returns the depth of a given binary tree.

[6]

Question 6

a) Define the terms (i) adjacent vertex and (ii) distance in relation to graphs.

[2]

b) Draw a diagram of a directed graph containing 5 vertices and 8 edges.

Draw 2 other diagrams to show how this graph will be represented by an adjacency matrix and an adjacency list.

[8]

c) Write the algorithm for breadth-first traversal of a given graph commencing at a given vertex.

[10]