UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

MAIN EXAMINATION 2006

TITLE OF PAPER: DATA NETWORK AND CODING THEORY I

COURSE NUMBER: CS437

TIME ALLOWED: THREE HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND ANY THREE OF THE

OTHER FOUR QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1 (Compulsory)

a) Name and briefly describe the layers of the OSI model. Include in your description the process of how data is encapsulated and decapsulated.	
[19] b) Describe three different types of data network topologies, using diagrams to illustrate each type.	5.
(c) A 12 bit Hamming code whose hexadecimal value is 111001001111 arrives at a receiver. What was the original value that left the transmitter in hexadecimal? Assume that not more than 1 bit is in error, and even parity is used.	
QUESTION 2	4.
a) Describe two different types of guided transmission media, indicating when it would be appropriate to use one over the other.	
b) Describe the bandwidth of a signal and bandwidth of a transmission medium.	6
c) A signal is made up of four (4) simple signals, with the following amplitudes and frequencies: 10 and 600Hz; 12 and 5.6 KHz; 8 and 3.8 KHz; 5 and 1.2 KHz. Draw a frequency domain diagram of the signal; what is the bandwidth of the signal?	Э.
d) Describe two (2) multiplexing techniques, indicating what type of signals use each type of multiplexing.	
e) Why can voice and data transmission be done simultaneously on ADSL lines? Why are the lines called Asymmetric (Digital Subscriber Lines)?	5 4
QUESTION 3	
b) Given the binary information 0101 1001 0010 , show how it can be transmitted over an analogue transmission medium using	?
(i) Frequency modulation (ii) Amplitude modulation.	5.
c) Using phase shift modulation, describe how the information in (b) can be transmitted using 2 bits per baud.	
	3

d) Does the CSMA/CD MAC protocol eliminate the possibility of collisions? Explain your answer. [3] Statement Western e) Does an Ethernet switch modify Ethernet headers? [2] f) A 1 Km fibre optic link between nodes A and B has a bandwidth of 1 Mbps. Information on the link travels at the speed of light, which is 3 x 108 m/s. A sends a 1 KB packet to B. Give an expression for the propagation delay. g) A message of 5000 bytes is to be sent from node A to node C, via node B, as shown by the diagram below. Message and packet switching are used for the transfer, where packets can be a maximum of 2000 bytes. Determine the time between the first bit leaving node A and the last bit reaching node C for both the message switching and packet switching. Ignore the processing delay at each node. The propagation speed for the links connecting any two nodes is 2 x 108 m/s. [6] **QUESTION 4** a) Show the encoded signal if the bit stream 110011101001 is encoded using (i) NZRL encoding (ii) Differential Manchester encoding होता का समानको है। (ii) MLT-3 encoding. [8] b) You are tasked with designing an error control strategy for sending 4-bit (i) What is the minimum number of redundant bits required for the receiver to be able to detect all 1-bit errors? Describe how the redundant bits are generated. (ii) What is the minimum number of redundant bits required for the receiver to be able to correct all 1-bit errors? Show how you determine this. [4] c) What is Hamming Distance? Find the Hamming Distance for the codewords 101101, 000000, 110011, 100001. [4] d) Determine the transmitted codeword for the message word given by the polynomial $x^5 + x^4 + x^2 + x$, using the generator polynomial $x^3 + 1$. [4] e) Describe the Simplex Stop-and-Wait protocol for both an error free channel, and a noisy channel. # 2 7 / \$ P L | 2 | P Ta 1 | X 15 14 [5]

QUESTION 5

a) What is the difference between a hub and a switch? At what layer of the OSI model do they operate?

[3]

- b) Describe Pulse Code Modulation. Why is it necessary in telecommunication networks?
- c) Consider the use of 10000 bit frames on a 1 Mbps satellite channel, where the satellite relay station is located 35000 Km above the earth's surface. The propagation speed of electromagnetic waves in air/vacuum is 3 x 108 m/s. What is the maximum link utilization for:

a) Stop-and-wait flow control protocol

b) Sliding window flow control protocol, with a window size of 7 Assume that acknowledgement frames are of negligible size.

d) What differentiates LANs, MANs and WANs?

[4]

[5]

- e) A 1 Km long, 4 Mbps CSMA/CD LAN has a propagation speed of 2 x 108 m/s. Data frames are 256 bits long, including 32 bits of header, checksum, and overhead. The first bit slot after a successful transmission is reserved for the receiver to capture the channel to send a 32 bit acknowledgement frame. What is the effective data rate, excluding overhead, assuming that there are no collisions? [4]
- f) With the assistance of a diagram, describe the functions of each field of an HDLC frame.

[5]

S 1001 2185 2

Commence of the second Link of the part of the second en des Carlos de Press over a million contract of

UNIVERSITY OF NAMIBIA

Faculties Admissions Administration U.B. (library services)

CENTRES

COMPUTER CENTRE

Staff	Mem	bers
-------	-----	------

Mission
Policies and Procedures
Support and Services

upport and Services Staff Members Circulars IT-Services Position

. . .

Name

IT Manager Suresh K S

Network Administrator <u>Daniel Hagemann</u>

Senior Hardware Technician Rovan Beukes

Assistant Network Administrator Markus Dawid Richter

Assistant Network Administrator Shilongo Skaria

Assistant Network Technician <u>Francis Silumesi</u>

Assistant Hardware Technician Ronny Jantjies

Printer Technician Robert Toromba

Help Desk Officer Gerhardt Kaunatjike

Senior Help Desk Officer Gail Beukes

Assistant Help Desk Officer Rose-Bella Beukes

Community Outreach

Quick Links

Research

Directorie

Centres/Campuse

A STATE OF THE STA