UNIVERSITY OF SWAZILAND

FACULTY SCIENCE DEPARTMENT OF COMPUTER SCIENCE

SUPPLEMENTARY EXAMINATION 2007

Title of paper

Databases and their design II

Course Number

CS 346

Time allowed

Three (3) hours

Instruction

Answer **FIVE** questions

This examination paper should not be opened until permission has been granted by the invigilator.

1.		
	a)	State the purpose and qualify (as unary or binary) any two relational algebra operations. [4]
	b)	How can the structure of a table be changed in SQL? What general types of changes are possible? [3]
	c)	Add a new attribute, Dept_Type , to the table DEPT (department) and set its value to MNGMNT (management) for all existing departments.
	d)	State and prove the formal definition of the division operation. [3]
	e)	Describe the purpose, advantage and disadvantage of indexes. [5]
2.		
	a)	Using a bookshop enterprise (has relations on books, authors, editors, etc) and stating all assumptions (especially on attributes and their names) write algebraic relational queries to:
		i) list all book titles and the names of their authors [3]
		ii) list all author's and editor's cities for all authors and editors who have the same names [3]
		iii) produce a list all author's names and dates of birth for all authors who live in Mbabane and all those who live in Manzini [3]
		iv) produce a list of all author's names for all authors who have written at least three books and also live in Mbabane – write

For each of the questions in 2 a) above write the appropriate SQL and QBE

list all the columns in the publisher's table together with their

What can you say about the execution of a query that involves a view?

this query in two ways

data types.

formulation for each of the five queries.

v)

b)

3.

[3]

[3]

[5]

4.

a) Describe a third normal form and the types of problems associated with tables that are not in third normal form. [10]
b) Convert the following table to 3NF: [10]
Student (std_numb, stud_name, numb_cred, adv_numb, adv_name, crse_numb, crse_descr, crse_grade)

where: stud_numb determines stud_name, numb_cred, adv_numb and adv_name; adv_numb determines adv_name; crse_numb determines crse_descr; and the combination of a stud_numb and a crse_numb determines a crse_grade

- 5.
- a) Using the types of entities found in a bookshop enterprise as in question 2 above create an example of a table that is in 1NF but not in 2NF, and, an example of a table that is in 2NF but not in 3NF in each case justify your choice of example.

 [10]
- b) In a) above, convert your 1NF table to a 2NF table; and the 2NF table to 3NF. [10]
- 6. Using the entities found in a college environment (faculties, students departments, courses, etc), create an example of a table that is in 1NF but not in 2NF and an example that is in 2NF but not in 3NF. In each case justify your answer and convert to 3NF.

 [20]