University of Swaziland

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

FINAL EXAMINATION, DECEMBER 2006

Title of Paper

Databases and their Design I

Course Number

CS 345

Time Allowed

Three (3) Hours

Instruction

Answer any FIVE questions

This exam paper should not be opened until permission has been granted by the invigilator.

Question 1		
(a)	Define the following terms:	
	(i) Data	1 [2]
	(ii) Database	[3]
	(iii) DBMS	[3]
(b)	The advantages of a DBMS include: increased productivity, data independata abstraction, and controlled/eliminated redundancy.	dence,
	(i) What is meant by data abstraction and how is it an advantage?	[4]
	(ii) How is productivity increased?	[3]
	(iii) How is data independence an advantage?	[2]
(c)	Differentiate between a single-user DBMS and a centralised DBMS.	[3]
Question 2		
-	involved in a database include a DBA, database designers and end users.	
(a)	Differentiate between a DBA and a database designer.	[4]
(b)	End users include naive (parametric) end users	
	(i) Describe a naive end user with the aid of an example.	[4]
	(ii) Compare and contrast the other two categories of end users.	[5]
(c)	In a DBMS environment:	
	(i) What would be your job if you were hired as a systems analyst?	[3]
	(ii) What would your job be if you were an application programmer?	[4]
Overtion 2		
Question 3	Data abstraction can be done at three main levels and the number of main	aroune
(a)	of data models are three. Choose any one of these two groups of three an	
	briefly about them. (No more than a page).	[9]
(b)	Define a relational database and an un-normalised relation.	[5]
(c)	Give the formal names of a record, a file, and a field.	[3]
(d)	Describe the shorthand representation of the structure of a relational dat	
(u)	Describe the shorthand representation of the structure of a relational date	[3]
		[-]
Question 4		
(a)	What does it mean to qualify a name of an attribute? How is this done?	[3]
(b)	Give three advantages of the relational database and two disadvantages.	[5]
(c)	Describe any two binary relational algebra operations with examples?	[4]
(d)	Describe how, a network model that is not pure hierarchical, can be imples	
	as though it were a pure hierarchical model.	[4]
(e)	What are the advantages of the hierarchical model as compared to the other	
	record-based logical models? What are the disadvantages?	[4]

Question 5

(a) Name and define two integrity constraints. [4]

- (b) Draw an E-R diagram for a banking enterprise with two entity sets, CUSTOMER and ACCOUNT: where each customer has a name, graded tax number and an address; an account can either be a current account or a savings account, and has a balance and account number. Find and place a meaningful relationship between these two entity sets.

 [6]
- (c) Define a primary key and, with the aid of a diagram, define existence dependance.
- (d) Describe generalisation with the aid of a diagram (NOT using a banking enterprise example). [6]

Question 6

Consider an ordinary university setting (that will have lecturers, courses, programs, etc).

- a) Describe aggregation using an academic setting where a course taught by a lecturer will be offered in a particular semester (term), hence the concept of taught and offered are addressing the same issue. Draw an E-R diagram to illustrate your description. [10]
- b) Reduce the E-R diagram in (a) into tables. [10]