UNIVERSITY OF SWAZILAND
Faculty of Science
Department of Computer Science

SUPPLEMENTARY EXAMINATION 2007

Title of paper: PROGRAMMING LANGUAGES
Course nutﬁber: CS343

Time allowed: Three (3) hours

Instructions: Answer any five (5) of the six (6) questions.

This examination paper should not be opened until permission has been granted by the invigilator.

1of6

Question 1

a) Ih a certain language, the following expression: a—tb-c|-»d—e
when fully parenthesized, becomes: (a—((tb)-((ci)-d)))<e

Note: In this language, arrows represent operators while letters
represent operands.

What, if anything, can be concluded from the above expression about
the fixity, associativity and relative precedence of the 4 operators in
this language?

[7]

b) Give a brief explanation of axiomatic semantics.

[3]

c) Describe any 5 kinds of user defined data types. For each kind,
include an example of how such a type is defined in Pascal or C++.
[10]

Question 2

a) Describe the components that make up an activation record.

[4]

b) Draw a series of labelled diagrams showing the state of the program
stack and associated registers immediately after each occurrence of
exit from function f over the lifetime of the following C++ program:

int £(int x) {
int y = x - 1;
if (y == 0) return O0;
else return 1 + f(y):
}

int main () {
int x = £(3);
return O;
}
[16]

20of6

Question 3

a) What are the main prescriptions of structured programming, and why
are they recommended?

8]
b) Mention 2 features of Pascal that permit unstructured programming
practices.
| [2]
c) Explain the following statement: “In object oriented languages,
classes not only act as ADTs, they also provide encapsulation and
interface-implementation separation.”
(6]
d) Explain the problem of repeated inheritance in object oriented
languages.
[4]

30of6

Question 4

a) Explain each of the following terms and their relevance to functional
programming: referential transparency, type inference and tail
recursion.

[6]

b) Name the 2 main components of any logic programming system, and
state the purpose of each.

[2]

c) For each of the following unification queries in Prolog, state whether
or not the pair of terms can be unified. If yes, give the values that will
be bound to the variables.

p(X) = 2.

p(X, Y) = p(5, 6).

p(X, X) = p(5, 6).

p(p (X)) = p(g(l)).

p(X, g(Y¥)) = pl(g(l), g(2)).

[5]

d) Draw the search tree for the following Prolog query:

b (X) .

Assume that the following predicates have already been entered into
Prolog:

1
2
3).
X

oo oo

- a(X), X > 1.

4 0f6

Question 5
a) State the meaning of the following Haskell type signature:

gba :: String -> [[Integer]] -> Bool
[3]

b) Function g5b, defined below in Haskell, takes a list parameter and

returns an integer. In 5 words or fewer state what this returned
integer means.

g5b a
let c = not (null c);
e = 1f b e then tail e
else e

in length (takeWhile b (iterate d a))

oM o

[3]

c) Write a recursive Haskell function named factorial that takes a
non-negative integer parameter n and returns the factorial of n.

[4]

d) Write a Haskell function named pairs that takes a string parameter
and returns a list of all adjacent pairs of characters found in the given

string. Assume that the given string will have a length of at least 2
characters.

For example, the value of the expression (pairs "UniSwa") must
be the following:
["Un", "ni"’ "iS"’ "Sw"’ "wa"]

[8]

e) Write the type signature of the pairs function mentioned in question
d) above.

[2]

50f6

Question 6

a)

Write a recursive Prolog predicate fib (N, X) that binds X to the N®
member of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, ... (where the
1* and 2™ members are by definition 1, and each remaining member is
the sum of its 2 predecessors). Assume that N will always be given as
a positive integer.

8]

b) Write a recursive Prolog predicate rev (L, R) that binds R to a list

that is the reverse of the given list L. Do not use the built-in
reverse predicate.

[7]

Write a recursive Prolog predicate double (L, R) where L is
assumed to be a list of integers. The predicate must bind R to a list
consisting of each element of L multiplied by 2.

For example, if Lis [3, -7, 0] then R must be boundto [6,
-14, 0].

[5]

60of6

