UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE **SUPPLEMENTARY EXAMINATION 2006** TITLE OF PAPER: DATA NETWORK AND CODING THEORY (I) COURSE NUMBER: CS440 (I) TIME ALLOWED: THREE HOURS INSTRUCTIONS: ANSWER ANY FOUR QUESTIONS. EACH QUESTION CARRIES 25 MARKS. DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR. #### **QUESTION 1** - a) What differentiates LANs, MANs and WANs? [5] b) Describe Frequency Division Multiplexing and Time Division Multiplexing, indicating what type of signals use each type of multiplexing. [8] c) Given the binary information 11110101000111, show how it can be transmitted over an analogue transmission medium using (i) Amplitude (ii) Phase shift modulation. [6] d) Using phase shift modulation, show how 3 bits per baud can be transmitted. - [4] e) What is the difference between bit rate and baud rate? - [2] # **QUESTION 2** - a) What is the OSI Model? Describe the function of each layer of the OSI Model. - [10] b) Given the constellation diagram below, how many different amplitudes and phase shifts does the diagram have? - c) How many bits are transmitted per baud? - d) In pulse code modulation, what is the sampling rate, and why this rate? - [5] e) With the assistance of an example, describe how character stuffing works. [3] [4] [3] # **QUESTION 3** | a) A certain transmission channel allows for frequencies between 3.175 GHz an 4.125 GHz and has a signal to noise ratio of 24dB. What is the channel's capacit | | |---|------------| | b) Data is to be transmitted over a standard telephone line using a modem at a speed of 56Kbps. Assuming the line has a usable bandwidth of 3.5 KHz, what is the minimum signal to noise ratio in dB required to support this? | 8 | | b) A digital signal has a bit interval of 10 micro seconds. What is the bit rate? | [5]
[3] | | c) What is Hamming Distance? Find the Hamming Distance for the codewords 10010101, 00000000, 10111001, 10000001. | | | d) Determine the transmitted codeword for the message word given by the polynomial $x^7 + x^4 + x^3 + x$, using the generator polynomial $x^3 + 1$. | [3] | | | [4]
Ig | | (II) ML1-3 encoding. | [6] | | QUESTION 4 | | | a) Describe the format of an IEEE 802.3 frame, and indicate how it differs from an Ethernet II frame. | | | b) Describe the operation of the CSMA/CD medium access control (MAC) protocol. | [5] | | c) Find the Hamming Code for the bit string 10100 . Odd parity is used for the check bits. | [5] | | d) Given a 3 Mbps satellite link connecting two ground stations, find the bit length of the link. The bit length is defined as a frame whose size is such that when the first bit of the frame reaches the receiver, the last bit of the frame is leaving the sender. The satellite is located 36,000 km above the earth's surfa and electromagnetic waves travel at 300,000 km/s in air and vacuum. | | | e) Assume a dog has been trained to carry a box of five, 700MB data CDs. The dog can travel at 20 Km/hr. For what range of distances does the dog have a higher data rate than a 2048 Kbps data line? | [3] | | f) Explain the terms circuit switching and packet switching. | [5] | | | [4] | | | | ## **QUESTION 5** - a) Explain in detail the operation of an Ethernet bridge when used to connect two Ethernet LAN segment. Your description should include reasons why a bridge is introduced in a LAN. - [5] b) Describe simplex stop-and-wait flow control protocol and sliding window flow control. - [7] c) What is the advantage of sliding-window flow control compared to stop-and-wait flow control? - d) Consider the use of 1000-bit frames on a 1-Mbps satellite channel with a 270ms delay. What is the maximum link utilization for stop-and-wait flow control? - e) Wireless LANs operate at frequencies between 902MHz and 928MHz and 2.4 GHz and 2.4835GHz, yet the data speeds supported by wireless are less than those supported by category 5 UTP which operates at frequencies from 0 to 100 MHz. Explain why this is the case. - f) What are the reasons for breaking a long data transmission up into a number of frames? [2] [3]