UNIVERSITY OF SWAZILAND
SUPPLEMENTARY EXAMINATION 2006

Title of paper: PROGRAMMING LANGUAGES
Course number: CS343

Time allowed: Three (3) hours

Instructions: Answer any five (5) of the six (6) questions.

This examination paper should not be opened until permission has been granted by the invigilator.

Question 1

a) Explain the main advantages of high level programming languages.
[10]

b) Contrast between the operational, axiomatic and denotational approaches to
specifying language semantics. In addition, specify the semantics of the
assignment operator using each method. '

[10]

Question 2

Give an overview of the kinds of user defined data types. Provide fragments of source
code in C++ and/or Pascal to show how each kind of type is defined.
(20]

Question 3

a) Give two examples of unstructured programming constructs in Pascal.

(2]

b) Describe any 2 of the main prescriptions ('good practices') of structured
programming.

(6]

¢) Explain the meaning of inheritance and dynamic dispatch in object oriented
languages. Furthermore, explain how they combine to provide inclusion
polymorphism.
(8]

d) Explain the problem of repeated inheritance.
(4]

20f4

Question 4

a) Contrast between the imperative and declarative approaches to language design. In
addition, explain the main advantages of each.

7

b) Explain the following terms in relation to functional programming:
[10]
+ Referential transparency.
Higher order function.
« Lazy evaluation.
+ Type inference.
« Pattern matching.

¢) Give an example of an extra-logical feature of Prolog, and explain why it is
included in the language.

B3]

Question 5

Define the following functions in Haskell. In addition, write the type signature of
each function.

a) A function that, given two lists of identical length consisting of floating-point
numbers, returns a list whose n-th element is the product of the n-th elements of the
given lists. E.g. if the parametersare [5, 2.2, -3.3]and [-1.1, 1,

-1], thentheresultis [-5.5, 2.2, 3.3].

[4]

b) A function that, given a string, returns the number of upper-case characters in the
string.

(8]

c) A tail-recursive version of the following function that counts the number of
elements in a given list (but do not use Haskell's built-in 1ength function):
(8]
count 1lst =
if 1st == [] then O
else 1 + count (tail 1lst)

30f4

Question 6

a) What, in general, would the user have to enter to cause the following Prolog query
to succeed?

(3]
read([IT]), length(T, L), L>Z2.

b) Write a recursive Prolog predicate 1istlen (L, Num) that binds Num to the
total number of elements in the given list L (but do not use Prolog's built-in
length predicate).

(7]

c¢) Assume that information about all students at a university has already been entered
into Prolog, under a predicate named student (Name, ID),where Name is the
student's name, ID is his unique 6-digit identity number (in range 100000 to
999999, inclusive).

i. Define a predicate idrange (Number) that succeeds when the given
Number is in the range of valid ID numbers.

[2]
ii. Write a query to find whether any two students are both named joe.

[3]
iii. Define a predicate names (N) that binds N to a list of all names of students.

[5]

40f4

