UNIVERSITY OF SWAZILAND
SUPPLEMENTARY EXAMINATION 2005

Title of paper: PROGRAMMING LANGUAGES

Course number: CS343
Time allowed: Three (3) hours

Instructions: Answer any five (5) of the seven (7) questions.

This examination paper should not be opened until permission has been granted by the
invigilator.

¢/

Question 1

(@)

(b)

Describe in detail the role of the program stack in the implementation of
parameter passing, local variables and recursion.

[14]
Draw a parse tree for the following expression:
>AAP>PBYCADAEVE4

Assume that A, B, C, D, E and F are terminals, and that the 4 triangular symbols
are symbols denoting operators that possess the following properties:

Precedence Arity Fixity Associativity

< 0 (highest) 1 Postfix Left
> 1 1 Prefix Right
A 2 2 Infix Left
v 3 (lowest) 2 Infix Right

(6]

Question 2

(a)

@ii) Goto.
[4]
® @ Define the term abstract data type (ADT.)
(11) Explain the advantages of typed programming languages over untyped
languages.
[7]
(c) ‘ Explain why each of the following language features is considered to be important
in supporting programming-in-the-large:
) Modularity.
(i) Interface/implementation separation.
(iii) Separate compilation.
[9]
Question 3
(a) Explain the statement: “An object possesses state, behaviour and identity.”
[4]
(b) Explain the repeated inheritance problem in languages that support multiple
inheritance.
[4]
(c) Explain how C++ supports any 3 forms of routine polymorphism. Illustrate each

Present the arguments made by structured programming advocates against the

following:

@) Global variables.

case with a short fragment of code.
[12]

g2

Question 4

(@) Define the following terms as they relate to functional programming;:
(i) Type signature.
(ii)) Infinite data structure.
(iii) Currying.
(iv) Pattern matching.
(8]
®) @) Define the structure of expressions in the A—calculus. -

(ii) Show how the following A—calculus expression is reduced to normal form:

((x. (ny- x+y) 3)) 2) (6]

Question 5

(a Give the algorithm for unification of Prolog terms.
[10]

(b) Assuming that the program given further below has already been entered into
Prolog, draw the search tree for the following query:

% This is the query:

c(X).

% Program follows:

a(i, 2, 3).

a(3, 4, 5).

b(2, 3).

c{l).

c(X) :- af r Xy)I b(XI).

[10]

Question 6

(a) Rewrite the following infix Haskell expression in prefix form:

1+2/3
[2]
(b) What is meant by the following Haskell type signature?
f :: Int -> [String]l =-> [(Int, String)]
[4]
(c) Assume that a list named persons, containing names and ages of people, has
been defined in Haskell in the following form:
persons = [(“Joe”, 12), (“Sam”, 11), etc]
@) Define a function that returns the smallest age found in the persons list.
[3]
(ii)) Define a function that returns the sum of ages of all members of the
persons list.
[4]
(iii) Define a function that returns the number of members of the persons
list representing only people aged between 10 and 15, inclusive
(7]

Question 7

(a)

(b)

(©)

(d)

Define a recursive Prolog predicate numzeros (Nums, Zeros) that succeeds

when Zeros is the number of zeros inside the Nums list argument (which has
already been bound to a list of numbers.)

[4]

Define a recursive Prolog predicate max imum (Nums, Max) that succeeds
when the List argument (which has already been bound to a list of numbers) has

Max as its greatest element. If the list is empty, the predicate should bind Max to
Zero.

(5]

Define a recursive Prolog predicate final (List, Last) that succeeds when
the List argument (which has already been bound to a list) has Last as its final
element. If the list is empty, the predicate should bind Last to zero.

[5]

Define a recursive Prolog predicate range (First, Last, Result) that
succeeds when First and Last are integers and Result is bound to a list of
integers of the form [First, First+1, First+2, ..., Last-1,
Last] (i.e. all integers between First and Last, inclusive.) If First is
greater than Last, Result should be bound to the empty list.

[6]

