University of Swaziland

Faculty of Science Department of Computer Science

Supplementary Examination, 2005

Title of Paper:

Computer Organisation I

Course Number:

CS241

Time Allowed:

Three (3) hours

Instruction:

Answer all questions

Special Requirement:

Table of IJVM instructions (appended)

This examination paper should not be opened until permission has been granted by the invigilator.

1. [11]

An extract from a provisional data sheet of an experimental ALU is given here.

Data sheet for the Kudu ALU

A_1	A ₂	A_3	I_{ι}	I ₂	output
0	0	1			+
1	0	0			-
1	0	1			OR
0	1	0			XOR
0	0	0			AND

i) What function of I1 and I2 appears at the output for the following settings of A and I?

	Aı	A ₂	A ₃	I_1	I ₂
a)	1	0	1	1	0
b)	· 1	1	1	1	0
c)	0	0	0	0	1
d)	0	0	0	1	1
e)	0	1	0	1	1

ii) Do you have any comments on the content of the Kudu data sheet?

2. [10]

(i) Write the following Pascal statement

$$m := m + 1;$$

in:

- a) Java
- b) Java assembly language using only four instructions
- c) Java JVM machine code
- ii) Why is the code produced in (b) bad code?

3 [5]

Why is it safe to run a Java applet on your computer?

4. [10]

Explain fully, with a diagram, each of the following terms:

- a) pin 15 is held at +5V
- b) pin 5 is asserted
- c) pin 6 is read control

5. [11]

a) Write the truth table for this circuit:

b) Does this circuit implement a single NAND, AND, OR or NOR gate?

Table of IJVM instructions

hex	mnemonic	meaning		
10	BIPUSH byte	push byte onto stack		
59	DUP	copy top word on stack and push onto stack		
A7	GOTO offset	unconditional branch		
60	IADD	pop two words from stack; push their sum		
7E	IAND	pop two words from stack; push Boolean AND		
99	IFEQ offset	pop word from stack; branch if it is zero		
9B	IFLT offset	pop word from stack; branch if it is less than zero		
9F	IF_ICMPEQ offset	pop two words from stack; branch if equal		
84	IINC varnum const	add a constant to a local variable		
15	ILOAD varnum	push local variable onto stack		
В6	INVOKEVIRTUAL disp	invoke a method		
80	IOR	pop two words from stack; push Boolean OR		
AC	IRETURN	return from method with integer value		
36	ISTORE varnum	pop word from stack; store in local variable		
64	ISUB	pop two words from stack; push their difference		
13	LDC_W index	push constant from constant pool onto stack		
00	NOP	do nothing		
57	POP	delete word on top of stack		
5F	SWAP	swap the top two words on the stack		
C4	WIDE	prefix instruction; next instruction has 16-bit index		

End of examination paper