UNIVERSITY OF ESWATINI

RE-SIT EXAMINATION 2020/2021

TITLE OF PAPER:

ORGANOMETALLIC CHEMISTRY

COURSE NUMBER:

CHE422

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE TWO (2) SECTIONS: SECTION A AND SECTION B.

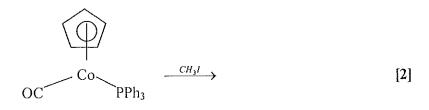
ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO (2)

QUESTION FROM SECTIONS B

SECTION A IS WORTH 40 MARKS AND EACH QUESTION IN SECTION B

IS WORTH 30 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.


PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A (COMPULSORY)

QUESTION ONE [40 Marks]

- Classify the following reaction into either <u>transmetallation</u> or <u>metathesis</u> (a) (i) reactions. $2Ga + 3CH_3-Hg-CH_3 \rightarrow 3Hg + 2Ga(CH_3)_3$ [1](ii) For each of the following compounds, indicate which one may serve as a good carbanion nucleophile reagent or a mild Lewis base at the central atom: (1) CH₃MgCl [1](2) $As(CH_3)_3$ [1] Classify the compound BCI(C₆F₅)₂ as <u>electron-precise</u> or <u>electron-</u> (iii) (1) Sketch the structure of hexamethyldialuminum [1] (iv) (2) Propose a structure for Al₂(Me)₄Cl₂ [1] The I₂ oxidation of [(^tBu)₄In₄] leads to the formation of the In^{II} compound (b) (i) [(Bu)₄In₄I₄] in which each indium atom retains a tetrahedral environment. Draw the correct structure. Do you think that the following reaction proceeds? If so, explain why and (ii)how? $ZnCl_2 + Al_2Me_6 \rightarrow ZnMe_2 + Al_2Cl_2Me_4$ State the oxidation state of the metal and the total valence electron count (iii) of the following species: (1) $[Cu(NH_3)_6]^2$ [1] [1] (2) CH₃Co(CO)₄ (1) What different hapticities are exhibited by cyclopentadienyl (C₅H₅) (iv) $[1\frac{1}{2}]$ (2) Specify the hapticity of the cyclopentadienyl ligand in
- (c) (i) Write the product(s) of the following reaction:

CpRh(CO)₂(PMe₃)

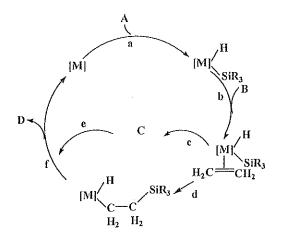
[1/2]

(ii) Upon binding to a metal centre does the C-O stretching frequency increase or decrease with regard to that of the free CO? [1]
 (2) Explain why low - valent metal centres stabilize CO binding in metal carbonyl complexes? [2]

٠	(iii)	Specify whether the <u>lengthening</u> or <u>shortening</u> of the C–C in the metal bound olefin moiety is observed as a result of σ - donation?						
	(iv)	Complete the following sentences correctly:	. ,					
	` ,		tive elimination is frequently observed in coordinatively					
		(2) Reductive elimination is accompanied by <u>increase</u> .	. ,					
		oxidation state of the metal.	[1]					
		(3) Oxidative addition is accompanied by <u>increase/c</u> coordination number of the metal.	decrease in the [1]					
(d)	(i)	 (1) Give an example of a ligand that undergoes 1,1 - ins (2) Complete the following oxidative addition (OA) real 						
		$lr \xrightarrow{Mel}$	[1]					
	(ii)	bserved for the [4]						
	(iii)	ion [Co(CO) ₃ (PPh ₃) ₂] ⁺ What charge, z, would be necessary for the following to obe						
		18-electron rule?						
		$(1) \qquad [Ru(CO)_4(SiMe_3)]^2$	[1]					
		(2) $[(\eta^6 - C_6 H_6)_2 Ru]^z$	[1]					
	<i>(</i> 1)	$[W(CO)_5(SnPh_3)]^z$	[1]					
•	(iv)	The reaction of $[(\eta^6 - C_6H_6)RuCl]_2$ (A) with C_6H_6 in the presence of						
		AgBF ₄ gives $[(\eta^6 - C_6H_6)_2Ru][BF_4]$ containing cation B . Treatment of this						
		compound with Na in liquid NH ₃ yields a neutral Ru(0	[6] complex, C.					
	Suggest structures for A, B and C.							

SECTION B (ANSWER ANY TWO QUESTIONS)

QUESTION ONE [30 Marks]


- (a) (i) Rationalise the observation that on forming IrBr(CO) $\{\eta^2$ -C₂(CN)₄ $\}$ (PPh₃)₂, the unique C-C bond in C₂(CN)₄ lengthens from 135 to 151 pm. [4]
 - (ii) Explain the difference between *homogeneous* and *heterogeneous* catalysts and detail the advantages and disadvantages of both. [8]
- (b) Draw a catalytic cycle for phosphine-cobalt catalysed hydroformylation. The catalyst precursor is H(CO)Co(PPh₃)₃. [10]
- (c) (i) For the pair of complexes given below, predict which one will be more reactive towards oxidative addition of H₂. Justify your choice. [4] IrCl(CO)(PPh₃)₂ or [PtCl(CO)(PPh₃)₂]⁺
 - (ii) In the substitution of V(CO)₆, the rate of reaction changes with respect to phosphine nucleophile according to the order
 PMe₃ > PBu₃ > P(OMe)₃ > PPh₃
 What does this suggest about the mechanism? [4]

QUESTION TWO [30 Marks]

- (a) Provide a mechanism for the reaction: $L_nZr-H + 2$ -butene $\rightarrow L_nZr-CH_2CH_2CH_3$ [10]
- (b) (i) A metal A reacts with dimethylmercury, $(CH_3)_2Hg$, to give metallic mercury and mercury free compound B, B contains 50.0% carbon and has the empirical formula C_3H_9A . The mass spectrum of B gives a molecular ion peak at m/z = 144, and the 1H NMR spectrum at 20 $^{\circ}C$ consists of a sharp singlet at $\delta = -0.31$ which at -65 $^{\circ}C$ becomes two sharp singlets at $\delta = +0.07$ and $\delta = -0.50$, with relative intensities 1:2. B reacts with methylamine, NH_2CH_3 , to produce the complex C which has the molecular formula $C_4H_{14}NA$. Identify A, B, and C. [6]
 - (ii) Draw <u>four</u> bonding modes for the *cyclooctatetraene*. [4]
- (c) (i) Predict the hapticity (i.e. what is n in η^n) of each Cp ring in Cp₂W(CO)₂.
 - (ii) How is an *alkylidenetriphenylphosphorane* (Wittig reagent) synthesised?
 - (iii) Give chemical equations to show what *alkylidenetriphenylphosphorane* is used for. [2]
 - (iv) Comment on the observation that the v(CO) peak in $[Fe(CO)_6]^{2+}$ appears at 2203 cm⁻¹compared with free CO which occurs at 2143 cm⁻¹. [4]

QUESTION THREE [30 Marks]

- (a) Using silicon (Si) and chloromethane (CH₃Cl) as primary starting materials, state reactions and give equations for the synthesis of hexamethyldisiloxane. [6]
 - (ii) Explain with necessary diagrams the bonding of ethylene, C_2H_4 to transition metal atoms with emphasis on the $\underline{\sigma\text{-donation}}$ and $\underline{\pi^*\text{-acceptance}}$ functions of the ligand.
- (b) Examine the scheme below. Draw structures for A, B, C and D. Describe steps a, b, c, d, e and f. Given that [M] is IrL_2X (L = phosphine i.e. PR_3 , X = halide), give oxidation states and electron counts for all metal complexes. [10]

- (c) Suggest a sequence of reactions (give equations and reaction types) for the preparation of the following compounds:
 - (i) $Mo(\eta^6-C_6H_6)(CO)_3$ given MoCl₃, Al, CO and C₆H₆ [4]
 - (ii) H₃C-Re(CO)₅ using Re₂O₇, CO, CH₃I and Na as the primary starting materials [4]

PERIODIC TABLE OF ELEMENTS

	•						····		-1
	76 - 376 376 - 376 376 - 573	7	6	¹Ch	Þ	ډب	2	erens.	PERIODS
	anthanide Serie *Aclinide Series	55 223 Fr 87	132.91 Cs	85.468 IRb	39.098 IK	22.990 Na i l	6.941 3	1.008	IA
	*Lanthanide Serics **Actinide Serics	56 226.03 R.a 88	137.33 Ba	87.62 Sr	40.078 Ca 20	24.305 Mg 12	9.012 Be		2 11A
		57 (227) **Ac 89	138.91 *La	A 70 906.88	44.956 Sc 21				111B
	140.12 Ce 58 232.04 Th	72 (261) Rf 104	178.49 班f	91.224 Zr	47.88 Ti				4 VB
1 11121	140.91 Pr 59 231.04 Pa 91	73 (262) Ela 105	180.95 Ta	92.906 Nb	50.942 V.				5 VB
2100	40.91 144.24 (145) 150.30 Pr Nd Pm Sm 59 60 61 62 31.04 238.03 237.05 (244) Pa U Np Pu 91 92 93 94	74 (263) Unii 106	183.85 W	95.94 Mo	51.996 Cr	TRAN			VIB
スシンプラク	(145) Pm 61 237.05 Np 93	75 (262) Uns 107	186.21 Re	98.907 Tc	54.938 Min	TRANSITION ELEMENTS			VIIB
ころてのすく	150.36 Sm 62 (244) Pu 94	76 (265) Uno 108	.190.2 Os	101:07 Ru	55.847 Fe	N ELEM			8
727	151.96 Eu 63 (243) Am 95	777 (266) Une	45. 192.22	102.91 Rh	58.933 Co	ENTS	:	.	OROUPS
1	157.25 Gd 64 (247) Cm 96	78 (267) Uun 110	195.08 IP#	28 106.42 Pd	58.69 Ni				10
	158.93 Tb 65 65 (247) Bk 97	79	47 196.97	. 29 107.87 Ag	63.546 Cu	9	Atom Syn	-	7 1
	162.50 Dy 66 (251) Cf 98	08	200.59	30 112.41 Cd	65.39 Zn	. 10	Atomic mass – Symbol – Atomic No		12
,	164.93 ' Ho 67 (252) Es 99	,			. 69.723 Ga	26.982 Al	10.811		13
	167.26 距r 68 (257) 原加 100	ļ			72.61 Ge		12.011		1.4
	168.93 Tm 69 (258) Md		~ ~ _		74.922 As		14.007 N	·	15
	173.04 Yb 70 (259) No		 		78.96 Se		0	· A	16
	174.97 Lu 71 (260) Lr 103	\	(210)			· w	18.998 FF	· Ally	17
L						39.948 AF		4.003	8
		Ĺ	1		1				لــــــــــــــــــــــــــــــــــــــ

() indicates the mass number of the isotope with the longest half-life.