UNIVERSITY OF ESWATINI ### **RE-SIT EXAMINATION 2020/2021** TITLE OF PAPER: ORGANOMETALLIC CHEMISTRY **COURSE NUMBER:** **CHE422** TIME ALLOWED: THREE (3) HOURS **INSTRUCTIONS:** THERE ARE TWO (2) SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO (2) **QUESTION FROM SECTIONS B** SECTION A IS WORTH 40 MARKS AND EACH QUESTION IN SECTION B IS WORTH 30 MARKS. A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER. PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. # SECTION A (COMPULSORY) # **QUESTION ONE [40 Marks]** - Classify the following reaction into either <u>transmetallation</u> or <u>metathesis</u> (a) (i) reactions. $2Ga + 3CH_3-Hg-CH_3 \rightarrow 3Hg + 2Ga(CH_3)_3$ [1](ii) For each of the following compounds, indicate which one may serve as a good carbanion nucleophile reagent or a mild Lewis base at the central atom: (1) CH₃MgCl [1](2) $As(CH_3)_3$ [1] Classify the compound BCI(C₆F₅)₂ as <u>electron-precise</u> or <u>electron-</u> (iii) (1) Sketch the structure of hexamethyldialuminum [1] (iv) (2) Propose a structure for Al₂(Me)₄Cl₂ [1] The I₂ oxidation of [(^tBu)₄In₄] leads to the formation of the In^{II} compound (b) (i) [(Bu)₄In₄I₄] in which each indium atom retains a tetrahedral environment. Draw the correct structure. Do you think that the following reaction proceeds? If so, explain why and (ii)how? $ZnCl_2 + Al_2Me_6 \rightarrow ZnMe_2 + Al_2Cl_2Me_4$ State the oxidation state of the metal and the total valence electron count (iii) of the following species: (1) $[Cu(NH_3)_6]^2$ [1] [1] (2) CH₃Co(CO)₄ (1) What different hapticities are exhibited by cyclopentadienyl (C₅H₅) (iv) $[1\frac{1}{2}]$ (2) Specify the hapticity of the cyclopentadienyl ligand in - (c) (i) Write the product(s) of the following reaction: CpRh(CO)₂(PMe₃) [1/2] (ii) Upon binding to a metal centre does the C-O stretching frequency increase or decrease with regard to that of the free CO? [1] (2) Explain why low - valent metal centres stabilize CO binding in metal carbonyl complexes? [2] | ٠ | (iii) | Specify whether the <u>lengthening</u> or <u>shortening</u> of the C–C in the metal bound olefin moiety is observed as a result of σ - donation? | | | | | | | |-----|------------------------------------|--|---|--|--|--|--|--| | | (iv) | Complete the following sentences correctly: | . , | | | | | | | | ` , | | tive elimination is frequently observed in coordinatively | | | | | | | | | (2) Reductive elimination is accompanied by <u>increase</u> . | . , | | | | | | | | | oxidation state of the metal. | [1] | | | | | | | | | (3) Oxidative addition is accompanied by <u>increase/c</u> coordination number of the metal. | decrease in the [1] | | | | | | | (d) | (i) | (1) Give an example of a ligand that undergoes 1,1 - ins (2) Complete the following oxidative addition (OA) real | | | | | | | | | | $lr \xrightarrow{Mel}$ | [1] | | | | | | | | (ii) | bserved for the [4] | | | | | | | | | (iii) | ion [Co(CO) ₃ (PPh ₃) ₂] ⁺ What charge, z, would be necessary for the following to obe | | | | | | | | | | 18-electron rule? | | | | | | | | | | $(1) \qquad [Ru(CO)_4(SiMe_3)]^2$ | [1] | | | | | | | | | (2) $[(\eta^6 - C_6 H_6)_2 Ru]^z$ | [1] | | | | | | | | <i>(</i> 1) | $[W(CO)_5(SnPh_3)]^z$ | [1] | | | | | | | • | (iv) | The reaction of $[(\eta^6 - C_6H_6)RuCl]_2$ (A) with C_6H_6 in the presence of | | | | | | | | | | AgBF ₄ gives $[(\eta^6 - C_6H_6)_2Ru][BF_4]$ containing cation B . Treatment of this | | | | | | | | | | compound with Na in liquid NH ₃ yields a neutral Ru(0 | [6] complex, C. | | | | | | | | Suggest structures for A, B and C. | | | | | | | | # **SECTION B (ANSWER ANY TWO QUESTIONS)** # **QUESTION ONE [30 Marks]** - (a) (i) Rationalise the observation that on forming IrBr(CO) $\{\eta^2$ -C₂(CN)₄ $\}$ (PPh₃)₂, the unique C-C bond in C₂(CN)₄ lengthens from 135 to 151 pm. [4] - (ii) Explain the difference between *homogeneous* and *heterogeneous* catalysts and detail the advantages and disadvantages of both. [8] - (b) Draw a catalytic cycle for phosphine-cobalt catalysed hydroformylation. The catalyst precursor is H(CO)Co(PPh₃)₃. [10] - (c) (i) For the pair of complexes given below, predict which one will be more reactive towards oxidative addition of H₂. Justify your choice. [4] IrCl(CO)(PPh₃)₂ or [PtCl(CO)(PPh₃)₂]⁺ - (ii) In the substitution of V(CO)₆, the rate of reaction changes with respect to phosphine nucleophile according to the order PMe₃ > PBu₃ > P(OMe)₃ > PPh₃ What does this suggest about the mechanism? [4] # **QUESTION TWO [30 Marks]** - (a) Provide a mechanism for the reaction: $L_nZr-H + 2$ -butene $\rightarrow L_nZr-CH_2CH_2CH_3$ [10] - (b) (i) A metal A reacts with dimethylmercury, $(CH_3)_2Hg$, to give metallic mercury and mercury free compound B, B contains 50.0% carbon and has the empirical formula C_3H_9A . The mass spectrum of B gives a molecular ion peak at m/z = 144, and the 1H NMR spectrum at 20 $^{\circ}C$ consists of a sharp singlet at $\delta = -0.31$ which at -65 $^{\circ}C$ becomes two sharp singlets at $\delta = +0.07$ and $\delta = -0.50$, with relative intensities 1:2. B reacts with methylamine, NH_2CH_3 , to produce the complex C which has the molecular formula $C_4H_{14}NA$. Identify A, B, and C. [6] - (ii) Draw <u>four</u> bonding modes for the *cyclooctatetraene*. [4] - (c) (i) Predict the hapticity (i.e. what is n in η^n) of each Cp ring in Cp₂W(CO)₂. - (ii) How is an *alkylidenetriphenylphosphorane* (Wittig reagent) synthesised? - (iii) Give chemical equations to show what *alkylidenetriphenylphosphorane* is used for. [2] - (iv) Comment on the observation that the v(CO) peak in $[Fe(CO)_6]^{2+}$ appears at 2203 cm⁻¹compared with free CO which occurs at 2143 cm⁻¹. [4] # **QUESTION THREE [30 Marks]** - (a) Using silicon (Si) and chloromethane (CH₃Cl) as primary starting materials, state reactions and give equations for the synthesis of hexamethyldisiloxane. [6] - (ii) Explain with necessary diagrams the bonding of ethylene, C_2H_4 to transition metal atoms with emphasis on the $\underline{\sigma\text{-donation}}$ and $\underline{\pi^*\text{-acceptance}}$ functions of the ligand. - (b) Examine the scheme below. Draw structures for A, B, C and D. Describe steps a, b, c, d, e and f. Given that [M] is IrL_2X (L = phosphine i.e. PR_3 , X = halide), give oxidation states and electron counts for all metal complexes. [10] - (c) Suggest a sequence of reactions (give equations and reaction types) for the preparation of the following compounds: - (i) $Mo(\eta^6-C_6H_6)(CO)_3$ given MoCl₃, Al, CO and C₆H₆ [4] - (ii) H₃C-Re(CO)₅ using Re₂O₇, CO, CH₃I and Na as the primary starting materials [4] # PERIODIC TABLE OF ELEMENTS | | • | | | | | | ···· | | -1 | |---------|--|----------------------------------|------------------|----------------------|--------------------|---------------------|----------------------------------|--------|---| | | 76 - 376
376 - 376
376 - 573 | 7 | 6 | ¹Ch | Þ | ډب | 2 | erens. | PERIODS | | | anthanide Serie
*Aclinide Series | 55
223
Fr
87 | 132.91
Cs | 85.468
IRb | 39.098
IK | 22.990
Na
i l | 6.941
3 | 1.008 | IA | | | *Lanthanide Serics
**Actinide Serics | 56
226.03
R.a
88 | 137.33
Ba | 87.62
Sr | 40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be | | 2
11A | | | | 57
(227)
**Ac
89 | 138.91
*La | A
70
906.88 | 44.956
Sc
21 | | | | 111B | | | 140.12
Ce
58
232.04
Th | 72
(261)
Rf
104 | 178.49
班f | 91.224
Zr | 47.88
Ti | | | | 4
 VB | | 1 11121 | 140.91
Pr
59
231.04
Pa
91 | 73
(262)
Ela
105 | 180.95
Ta | 92.906
Nb | 50.942
V. | | | | 5
VB | | 2100 | 40.91 144.24 (145) 150.30 Pr Nd Pm Sm 59 60 61 62 31.04 238.03 237.05 (244) Pa U Np Pu 91 92 93 94 | 74
(263)
Unii
106 | 183.85
W | 95.94
Mo | 51.996
Cr | TRAN | | | VIB | | スシンプラク | (145)
Pm
61
237.05
Np
93 | 75
(262)
Uns
107 | 186.21
Re | 98.907
Tc | 54.938
Min | TRANSITION ELEMENTS | | | VIIB | | ころてのすく | 150.36
Sm
62
(244)
Pu
94 | 76
(265)
Uno
108 | .190.2
Os | 101:07
Ru | 55.847
Fe | N ELEM | | | 8 | | 727 | 151.96
Eu
63
(243)
Am
95 | 777
(266)
Une | 45.
192.22 | 102.91
Rh | 58.933
Co | ENTS | : | . | OROUPS | | 1 | 157.25
Gd
64
(247)
Cm
96 | 78
(267)
Uun
110 | 195.08
IP# | 28
106.42
Pd | 58.69
Ni | | | | 10 | | | 158.93
Tb
65
65
(247)
Bk
97 | 79 | 47
196.97 | . 29
107.87
Ag | 63.546
Cu | 9 | Atom
Syn | - | 7 1 | | | 162.50
Dy
66
(251)
Cf
98 | 08 | 200.59 | 30
112.41
Cd | 65.39
Zn | . 10 | Atomic mass – Symbol – Atomic No | | 12 | | , | 164.93
' Ho
67
(252)
Es
99 | , | | | . 69.723
Ga | 26.982
Al | 10.811 | | 13 | | | 167.26
距r
68
(257)
原加
100 | ļ | | | 72.61
Ge | | 12.011 | | 1.4 | | | 168.93
Tm
69
(258)
Md | | ~ ~ _ | | 74.922
As | | 14.007
N | · | 15 | | | 173.04
Yb
70
(259)
No | | | | 78.96
Se | | 0 | · A | 16 | | | 174.97
Lu
71
(260)
Lr
103 | \ | (210) | | | · w | 18.998
FF | · Ally | 17 | | L | | | | | | 39.948
AF | | 4.003 | 8 | | | | Ĺ | 1 | | 1 | | | | لــــــــــــــــــــــــــــــــــــــ | () indicates the mass number of the isotope with the longest half-life.