UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2020/2021

TITLE OF PAPER:

ORGANOMETALLIC CHEMISTRY

COURSE NUMBER:

CHE422

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

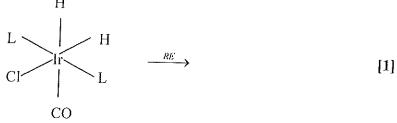
THERE ARE TWO (2) SECTIONS: SECTION A AND SECTION B.

ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO (2)

QUESTION FROM SECTIONS B

SECTION A IS WORTH 40 MARKS AND EACH QUESTION IN SECTION B IS WORTH 30 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

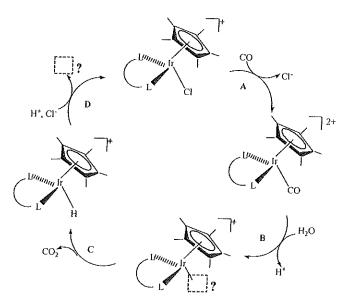

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A (COMPULSORY)

QUESTION ONE [40 Marks]

(a)	(i)	Classify the following reaction into either <u>transmetallation</u> or <u>metathesis</u> reaction.						
	(ii)	 Li₄(CH₃)₄ + SiCl₄ → 4LiCl + Si(CH₃)₄ For each of the following compounds, indicate which one may se good <u>carbanion nucleophile</u> reagent or a mild <u>Lewis acid</u> at the atom: 						
	(iii)	(1) CH ₃ MgBr (2) B(CH ₃) ₃ Classify the compound SiH(CH ₃) ₃ as <u>electron-precise</u> <u>deficient</u> .						
	(iv)	Sketch the structure of methyl lithium.	[1] [2]					
(b)	(i)	Compare formulas of the most stable hydrogen compounds of Ge and arsenic, As with those of their methyl compoundifferences be explained in terms of the relative electronega and H?	ds. Can the tivities of C					
	(ii)	The reaction of $[(R_3C)_4 Ga_4]$ (R = a bulky substituent) (I) with I_2 in boiling hexane results in the formation of $[(R_3C)Ga]_2$ (II) and $[(R_3C)Ga]_3$ (III)						
	(iii)	Draw the <u>structures</u> and state the oxidation states for (1) - (111)						
	(iv)	(2) $Fe_2(CO)_8$ Explain why the metal centre in cobalticene, $Co(\eta^5-C_5H_5)_2$ oxidized.	[1] [1] gets easily [2]					
(c)	(i)	Write the product(s) of the following reaction: Ph ₃ P CH ₂ CH ₄						
	(ii)	$ \begin{array}{ccc} & \text{Ph}_{3}P & \text{CH}_{2} \\ & \text{Ph}_{3}P & \text{CH}_{2} \end{array} $	[2]					
	(11)	in the metal bound olefin moiety is observed as a result of metal to ligan						
	(iii)							
	(iv)	 π - back donation? (1) What are the hapticities displayed by an allyl moiety in bindimetals? (2) Predict the product of the following reaction: 	[1] ng to [1]					
		Na ⁺ [Mn(CO) ₅] + CH ₂ =CHCH ₂ Cl (3) Specify the hapticities of the cyclopentadienyl ligands in	[2]					
		Cp ₂ Mo(PPh ₃) ₂	[1]					

- (d) (i) Complete the following sentences correctly:
 - (1) Oxidative addition is frequently observed in coordinatively saturated/unsaturated metal complexes.
 - Oxidative addition is accompanied by increase/decrease in the oxidation state of the metal.
 - (3) Reductive elimination is accompanied by <u>increase/decrease</u> in the coordination number of the metal.
 - (ii) (1) Give an example of a ligand that undergoes 1,2 insertion. [1]
 - (2) Complete the following <u>reductive elimination</u> (RE) reaction.



- (iii) What charge, z, would be necessary for $[(\eta^3 C_3H_5)V(CNMe)_5]^z$ to obey the 18-electron rule?
- (iv) Rationalise the observation that on going from Fe(CO)₅ to Fe(CO)₅(PPh₃)₂, absorptions in the IR spectrum at 2025 and 2000 cm⁻¹ are replaced by bands at 1944, 1886 and 1881 cm⁻¹. [3]

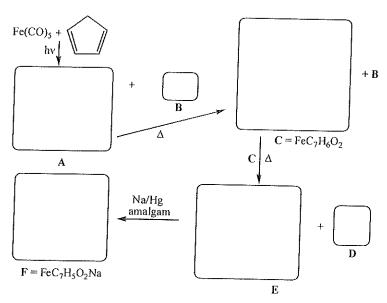
SECTION B (ANSWER ANY TWO QUESTIONS)

QUESTION ONE [30 Marks]

- (a) (i) Alkynes readily bridge M-M bonds, in which case they act as 2-electron donors to each metal. Sketch the product, (μ₂-PhCCPh)Co₂(CO)₆ of the reaction below, indicating the hybridization of the C atoms. [4] PhCCPh + Co₂(CO)₈ → (μ₂-PhCCPh)Co₂(CO)₆ + 2CO
 - (ii) The M-P distance in $(\eta^5-C_5H_5)$ Co(PEt₃)₂ is 221.8 pm and the P-C distance is 184.6 pm. The corresponding distances in $[(\eta^5-C_5H_5)$ Co(PEt₃)₂]⁺ are 223 pm and 182.9 pm. Account for the changes in these distances as the former complex is oxidised.
- (b) (i) Inspect the catalytic cycle below. Give the species in the two boxes (marked with "?") and describe each of the steps A-D in as much detail as possible.

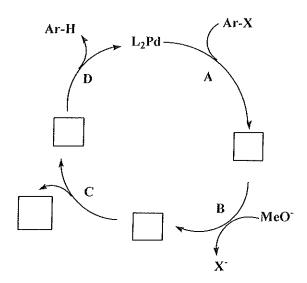
- (ii) Which of the following constitute genuine examples of catalysis and which do not? Justify your answers.
 - (1) The addition of H_2 to C_2H_4 when the mixture is brought into contact with finely divided platinum. [2]
 - (2) The reaction of a H_2/O_2 gas mixture when an electrical arc is struck. [2]
 - (3) The combination of N₂ gas with lithium metal to produce Li₃N, which then reacts with H₂O to produce NH₃ and LiOH. [2]
- (c) (i) Suggest products in the following reactions:
 - (1) $[(C_6H_5)_3PCH_3]^{\dagger}Br$ with C_4H_9Li ("BuLi)

[2]


(2) $(\eta^5 - C_5 H_5)_2$ Fe with $C_4 H_9 Li$ ($^n Bu Li$)

[2]

(ii) For the pair of complexes given below, predict which one will be more reactive towards oxidative addition of H₂. Justify your choice. [4] RhCl(PPh₃)₃ or RhCl(CO)(PPh₃)₂


QUESTION TWO [30 Marks]

- (a) (i) Mo(CO)₆ undergoes substitution reactions with phosphine ligands, but the reaction never proceeds further than the Mo(CO)₃(PR₃)₃ stage. If the phosphines are very bulky, the phosphines are arranged *mer*, but otherwise are always *fac*. Explain these two observations.
 - (ii) The product of reaction between PtCl₂ and CO at high pressure and 200 °C has a molecular weight of 322. Determine the formula and suggest possible isomers. [5]
- (b) (i) NO^+ is isoelectronic with CO and often replaces CO in substitution reactions, so it might seem the reaction below is favourable. Comment on whether the process is likely. [4] $Mo(CO)_6 + NOBF_4 \rightarrow [Mo(NO)_6][BF_4]_6 + 6CO$
 - (ii) Write balanced equations for the following reaction types:
 - (1) $(CH_3CH_2)_3Ga + CH_3OH \rightarrow$ [2]
 - (2) $Al_2(CH_3)_6 + N(C_2H_5)_3 \rightarrow$ [2]
- Irradiating Fe(CO)₅ with UV light in the presence of cyclopentadiene results in the formation of **A** and colourless gas **B**. **A** has <u>four</u> different ¹H NMR environments in a 2:2:1:1 ratio. Heating **A** further results in the release of more **B** to make **C**, having the formula FeC₇H₆O₂. Molecule **C** reacts rapidly with itself at room temperature to eliminate colourless gas **D**, forming solid **E**. Compound **E** has two strong IR bands, one near 1850 cm⁻¹, the other near 2000 cm⁻¹. Treatment of **E** with Na metal generates solid **F** of empirical formula FeC₇H₅O₂Na. Draw structures of **A** to **F** indicated by the boxes in scheme below. [12]

QUESTION THREE [30 Marks]

- (a) (i) Explain the following: The *cis* isomer of (PPh₃)₂Pd(CH₂CH₃)₂ decomposes immediately to give butane, but the *trans* isomer produces a 1:1 mixture of ethene and ethane. [4]
 - (ii) Ru(CO)₃L₂, where L = PPh₃ reacts with CH₃I as shown: Ru(CO)₃L₂ + CH₃I \rightarrow cis-Ru(CO)₂(L₂)(CH₃)(I) + CO The product features CH₃I oxidatively added cis (C and I have very similar electronegativities). The reaction mechanism involves two steps.
 - (1) After counting the electrons in Ru(CO)₃L₂, what is the <u>first step</u> in the mechanism? [2]
 - (2) What is the second step? [2]
 - (3) Sketch the <u>transition state</u> in the <u>second step</u>. [2]
- (b) Examine the scheme below (L = phosphine i.e. PR₃). Give appropriate <u>structures</u> and give <u>electron counts</u> and <u>oxidation states</u> for all palladium complexes. Name reactions A, B, C and D. [10]

- (c) (i) Propose the main steps in the catalytic cycle for the conversion of pent-1-ene to hexanal using HCo(CO)₄ as the catalyst precursor. [7]
 - (ii) Predict giving reason(s) the influence of an increase in the CO partial pressure above a certain threshold on the rate of the reaction (c)(i) above.

[3]

PERIODIC TABLE OF ELEMENTS

* ** * **	7	Q .Q	4.	یں	2	PERIODS
*Lanthanide Series **Actinide Series		85.468 Rb 37 132.91 Cs	39.098 K 19	22.990 Na 11	6.941 3	1.000.1
e Series Series	56 226.03 Ra 88	87.62 Sr 38 137.33	40.078 Ca 20	24.305 ! Vig !2	9.012 Be	11A
·.	57 (227) ***Ac 89	88.906 Y 39 *La	44.956 Sc 21			III B
140.12 Ce 58 232.04 Th 90	72 (261) Rf 104	91.224 Zr 40 178.49	47.88 Ti 22			IVB
140.91 Pr 59 231.04 Pa 91 () indi	73 (262) Ha 105	92.906 Nb 41 180.95	50.942 V 23			S VB
144.24 Nd 60 238.03 U 92 cates the	74 (263) Unh 106	95.94 Mo 42 183.85	51.996 Cr	TRAI		VIB
40.91 144.24 (145) 150.36 151.96 157.25 1 Pr Nd Pm Sm Eu Gd 59 60 61 62 63 64 31.04 238.03 237.05 (244) (243) (247) Pa U Np Pu Am Cm 91 92 93 94 95 96) indicates the mass number of the isotope with t	75 (262) Uns	98.907 Te 43 186.21	54.938 Min	TRANSITION ELEMENTS		7 VIIB
150.36 Sm 62 62 (244) Pu 94 umber o	76 (265) Uno 108	101:07 Ru 44	55.847 Fe	N ELEN	•	. 8
151.96 Eu 63 (243) Am 95	77 (266) Une	27 102.91 Rh 45 192.22	58.933 Co	ÆNTS	•	GROUPS 9 VIIIB
157.25 Gd 64 (247) Cm 96	78 78 (267) Uun 110	28 106.42 Pd 46 195.08	58.69 Ni		E	10 S
158.93 Tb 65 (247) Bk 97	Au 79	. 29 107.87 Ag 47 196.97	63.546 Cu	Alor	Aton	- = = = = = = = = = = = = = = = = = = =
158.93 162.50 164 Tb Dy H 65 66 6 (247) (251) (25 Bk Cf E 97 98 90 he longest half-life.	Hg 80	30 112.41 Cd 48 200.59	65.39 Zn 30	Atomic No	Atomic mass - Symbol -	IIB
164.93 Ho 67 (252) Es 99			. 69.723	26.982 A	7 10.811	13 111A
167.26 Er 68 (257) Fun 100	82.			2	12.011	IVA
168.93 Tm 69 (258) Md	83 83	33 121.75 Sb 51	74.922	36	14.007	VA
173.04 Yb 70 (259) No	Po 84	34 1127.60 Te 52	78.96	ω l		VIA VIA
174.97 Lu 71 (260) Lr 103	At 85		79.904	35.453		VIIA
	(222) Rn 86	36 . 131.29 Xe 54				18 VIIIA 4.003