UNIVERSITY OF ESWATINI

RESIT EXAMINATION 2020/2021

TITLE OF PAPER:

PHYSICAL METHODS OF INORGANIC

CHEMISTRY

COURSE NUMBER:

CHE421

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

THIS PAPER CONTAINS TWO (2) SECTIONS. ANSWER ALL QUESTIONS FROM SECTION A AND ANY OTHER TWO (2) QUESTIONS FROM SECTION B. SECTION A IS WORTH 30 MARKS AND EACH QUESTION IN SECTION B IS

WORTH 20 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1 COMPULSORY [30 MARKS]

(a)	What experimental characterization techniques could be used to:						
•		Determining whether O-H or O-D bonds vibrate at higher	r frequencies				
		(wavenumbers)?	[3]				
	2.	Determine whether a sample is dimethylsilane ((CH ₃) ₂ SiH ₂)	or ethylsilane				
		$(C_2H_5SiH_3)$?	[2]				
	3.	Determine the composition of the solid product from the	reaction of				
		CH ₃ NH ₃ Cl with PdCl ₂ in aqueous 2 M HCl?	[4]				
(b)		ate the:					
	1.	Wavelength of an electron moving with a speed of 5.97 x10 ⁶ ms	1 ? (m_{e} = 9.11				
		$x10^{-31}$ kg).	[2]				
	2.	uency of 4.12					
		$x10^{14} s^{-1}$.	[2]				
(c)	Explain why						
	1.	ch lower					
		absorbance are still observed in a UV-Visible spectrum?	[2]				
		Transition metal complexes are coloured?	[2]				
	3.	X-ray crystallography is important to the inorganic chemist.	[4]				
(d)	Consid	lering the bonding in metal carbonyls, what factors would af	fect the C-O				
	stretching vibrations?						
(e)	Predict	t the sign of g for Mo ⁵⁺ .	[2]				
(f)	Discus	ss 2 factors which can affect the chemical shift in NMR spectrosco	py.				
` '			[4]				

SECTION B

ANSWER ANY 2 QUESTIONS FROM THIS SECTION

QUESTION 2 [20 MARKS]

(a) Sketch the first derivative spectrum of a radical containing one $I = \frac{1}{2}$ nuclei with a hyperfine coupling constant A of 100 G, and one $I = \frac{3}{2}$ nuclei with a hyperfine coupling constant of 20 G. Assume that g = 2.0023 and the operating frequency is 9.25 GHz. Sketch the spectrum with the hyperfine coupling constants reversed.

[4]

- (b) Explain why many complexes of Ln²⁺ and Ln⁴⁺ are intensely coloured. [4]
- (c) In the broadband decoupled (¹³C{¹H}) spectrum of the *cis* and *trans* forms of W(CH₃)₂(CO)₄, how many ¹³C resonance peaks would you expect? Justify your answer. (NB: Take W as NMR inactive). [4]
- (d) Explain why the proton decoupled ³¹P NMR spectrum of *trans*-Pt[PMe₃]₂Cl₂ consists of three resonances with intensity ratios 1:4:1. Predict the expected features in the ³¹P NMR spectrum of *cis*-Pt[PMe₃]₂Cl₂. (¹⁹⁵Pt, *I* = 1/2, 33.8% abundant). [4]
- (e) The ¹⁹F NMR spectrum of a sample containing the [BF₄] anion consisted of a quartet of equal intensity peaks (total relative intensity 80%) and a septet of equal intensity resonances (total relative intensity 20%). Explain this observation. [4]

QUESTION 3 [20 MARKS]

A student has prepared a sample of $[Zn(en)_3]Cl_2$ (en = $H_2NCH_2CH_2NH_2$) but is worried that the complex appears blue when $[Zn(en)_3]Cl_2$ should be colourless. The student wonders if she picked up a bottle of nickel(II) chloride instead of zinc(II) chloride. The experimental CHN analysis for the complex is C 23.00%, H 7.71% and N 26.92%.

- (a) Do the elemental analytical data distinguish between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂? Comment on your answer. [8]
- (b) How would mass spectrometry help you to distinguish between the two compounds?
- (c) Suggest why ¹H NMR spectroscopy might be useful in distinguishing between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂. [2]
- (d) Suggest why UV-VIS spectroscopy might be useful in distinguishing between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂ [2]
- (e) A single crystal X-ray diffraction study was carried out and confirmed the presence of [M(en)₃]Cl₂. Can this technique unambiguously assign M to Zn or Ni? [2]
- (f) How would you confirm the presence of the chloride ion? [2]

QUESTION 4 [20 MARKS]

- a) 12.915 g of a biochemical substance containing only carbon, hydrogen, and oxygen was burned in an atmosphere of excess oxygen. Subsequent analysis of the gaseous result yielded 18.942 g carbon dioxide and 7.749 g of water. Determine the empirical formula of the substance. [8]
- b) Consider the two structures given below. Briefly explain how you can distinguish the two structures from each other based on:
 - 1. ¹H NMR and;
 - 2. ${}^{31}P{}^{1}H} NMR.$

Use suitable diagrams to illustrate your answer.

[4]

HO

HO

HO

P(OH)₃

Phosphorous acid (minor tautomer)

H₃PO₃

[4]

c) An ESI MS spectra of a [Co(en)₃]Cl₃ complex is shown. Assign the peaks marked with m/z values and state the molecular ion peak. Show your calculations clearly.

[8]

Fig 1: Positive-ion ESI MS spectra of the complex [Co(NH₂CH₂CH₂NH₂)₃]Cl₃ in methanol solvent

General data and fundamental constants

Quantity	Symbol	Value			
Speed of light Elementary charge Faraday constant Boltzmann constant Gas constant	c e $F = N_A e$ k $R = N_A k$	2.997 924 58 X 10 ⁸ m s ⁻¹ 1.602 177 X 10 ⁻¹⁹ C 9.6485 X 10 ⁴ C mol ⁻¹ 1.380 66 X 10 ²³ J K ⁻¹ 8.314 51 J K ⁻¹ mol ⁻¹ 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹			
Planck constant Avogadro constant Atomic mass unit	$h = h/2\pi$ N_A u	6.626 08 X 10 ⁻³⁴ J s 1.054 57 X 10 ⁻³⁴ J s 6.022 14 X 10 ⁻²³ mol ⁻¹ 1.660 54 X 10 ⁻²⁷ Kg			
Mass electron proton neutron Vacuum permittivity Vacuum permeability	m_e m_p m_n $\varepsilon_o = 1/c^2 \mu_o$ $4\pi\varepsilon_o$ μ_o	9.109 39 X 10 ⁻³¹ Kg 1.672 62 X 10 ⁻²⁷ Kg 1.674 93 X 10 ⁻²⁷ Kg 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ 1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ 4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹ 4π X 10 ⁻⁷ T ² J ⁻¹ C ⁻² m ³			
Magneton Bohr nuclear g value Bohr radius Fine-structure constant Rydberg constant Standard acceleration of free fall Gravitational constant	$\mu_{B} = e h/2m_{e}$ $\mu_{N} = e h/2m_{p}$ g_{e} $a_{o} = 4\pi e_{o} h/m_{e}e^{2}$ $\alpha = \mu_{o}e^{2}c/2h$ $R_{\infty} = m_{e}e^{4}/8h^{3}c$ g G	7,297 35 X 10			
Conversion factors 1 cal 4.184 1 eV 1.602		erg 1 X 10 ⁻⁷ J eV/molecule 96 485 kJ mol ⁻¹ 23.061 kcal mol ⁻¹			
f p n · μ femto pico nano micro 10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶	milli centi c	l k M G Prefixes leci kilo mega giga 10 ⁻¹ 10 ³ 10 ⁶ 10 ⁹			

PERIODIC TABLE OF ELEMENTS

1 ,	7	6	نار کا ا	4	ω	'n	jund .	PERIODS	
*Lanthanide Series	223 Fr 87	132.91 Cs 55	85,468 • Rb 37	39.098 K 19	22,990 Na 11	6.941 Li 3	1.008 H 1	1 IA	
de Serie	226.03 R.a 88	137.33 Ba 56	87.62 St 38	40.078 Ca 20	24.305 Mg 12	9.012 Be 4		2 IIA	
····	(227) *** Ac 89	138.91 *La 57	88.906 Y 39	44.956 Sc 21				3 IIIB	
140.12 Ce 58	(261) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22				4 IVB	
140.91 Pr 59	(262) Ha 105	180.95 Ta 73	92.906 Nb 41	50.942 V 23				₽ S	
144.24 Nd			95.94 Mo 42	51.996 Cr 24	TRAN	•		VIB 6	
(145) Pm 61	(262) Uns 107	186.21 Re 75	98.907 Tc 43	54.938 Mn 25	TRANSITION ELEMENTS			7 VIIB	
150.36 Sm 62	(265) Uno 108	190.2 Os 76	101.07 Ru 44	55.847 Fe 26	Mata			∞	£
151.96 Eu 63	(266) Une 109	192.22 Ir 77	102.91 Rh 45	58.933 Co 27	ENTS			VIIIB 9	GROUPS
157.25 Gd 64	(267) Uun 110	195.08 Pt 78	106.42 Pd 46	58.69 Ni 28				10	
158.93 Tb 65		196.97 Au 79	107.87 Ag 47	63,546 Cu 29		Atomic mass Symbol Atomic No.		⊞□	
162.50 Dy 66	•	200.59 Hg 80	112.41 Cd 48	65.39 Zn 30				12 IIB	
164.93 H.o 67		204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	8. 118.01		∏ A	
167.26 Er 68				72.61 Ge 33	28,086 Si 14	12.011 C 6		IVA	
168.93 Tm 69		208.98 Bi 83	121.75 Sb 51	74,922 A.s 33	30.974 P 15	14.007 N 7		15 VA	
173.04 Yb 70		(209) Po 84	127.60 Te 52	78.96 Se 34	32.06 S 16	8 O 666'51		AIV 16	
174.97 Lu 71		(210) At 85	126.90 I 53	79.904 Br 35	35,453 CI 17	6 A 866'81		17 VIIA	
		(222) R n 86	131,29 Xe 54	83.80 Kr 36	39.948 Ar 18	20.180 Ne 10	4,003 He 2	VIIIA	

**Actinide Series

232.04 Th 90

238.03 U 92

237.05 Np 93

(244) Pu 94

(243) **Ann** 95

(247) % **C**

97 97 97

88 Cf 98 98

(252) E.s 99

(257) Fign 100

(258) **Md** 101

(259) No 102

(260) Lr 103

() indicates the mass number of the isotope with the longest half-life.