UNIVERSITY OF ESWATINI ### **RESIT EXAMINATION 2020/2021** TITLE OF PAPER: PHYSICAL METHODS OF INORGANIC **CHEMISTRY** COURSE NUMBER: **CHE421** TIME ALLOWED: TWO (2) HOURS **INSTRUCTIONS:** THIS PAPER CONTAINS TWO (2) SECTIONS. ANSWER ALL QUESTIONS FROM SECTION A AND ANY OTHER TWO (2) QUESTIONS FROM SECTION B. SECTION A IS WORTH 30 MARKS AND EACH QUESTION IN SECTION B IS WORTH 20 MARKS. A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. ## SECTION A: ANSWER ALL QUESTIONS # QUESTION 1 COMPULSORY [30 MARKS] | (a) | What experimental characterization techniques could be used to: | | | | | | | |-----|---|--|---------------------------|--|--|--|--| | • | | Determining whether O-H or O-D bonds vibrate at higher | r frequencies | | | | | | | | (wavenumbers)? | [3] | | | | | | | 2. | Determine whether a sample is dimethylsilane ((CH ₃) ₂ SiH ₂) | or ethylsilane | | | | | | | | $(C_2H_5SiH_3)$? | [2] | | | | | | | 3. | Determine the composition of the solid product from the | reaction of | | | | | | | | CH ₃ NH ₃ Cl with PdCl ₂ in aqueous 2 M HCl? | [4] | | | | | | (b) | | ate the: | | | | | | | | 1. | Wavelength of an electron moving with a speed of 5.97 x10 ⁶ ms | 1 ? (m_{e} = 9.11 | | | | | | | | $x10^{-31}$ kg). | [2] | | | | | | | 2. | uency of 4.12 | | | | | | | | | $x10^{14} s^{-1}$. | [2] | | | | | | (c) | Explain why | | | | | | | | | 1. | ch lower | | | | | | | | | absorbance are still observed in a UV-Visible spectrum? | [2] | | | | | | | | Transition metal complexes are coloured? | [2] | | | | | | | 3. | X-ray crystallography is important to the inorganic chemist. | [4] | | | | | | (d) | Consid | lering the bonding in metal carbonyls, what factors would af | fect the C-O | | | | | | | stretching vibrations? | | | | | | | | (e) | Predict | t the sign of g for Mo ⁵⁺ . | [2] | | | | | | (f) | Discus | ss 2 factors which can affect the chemical shift in NMR spectrosco | py. | | | | | | ` ' | | | [4] | | | | | | | | | | | | | | ### SECTION B ### ANSWER ANY 2 QUESTIONS FROM THIS SECTION ### **QUESTION 2 [20 MARKS]** (a) Sketch the first derivative spectrum of a radical containing one $I = \frac{1}{2}$ nuclei with a hyperfine coupling constant A of 100 G, and one $I = \frac{3}{2}$ nuclei with a hyperfine coupling constant of 20 G. Assume that g = 2.0023 and the operating frequency is 9.25 GHz. Sketch the spectrum with the hyperfine coupling constants reversed. [4] - (b) Explain why many complexes of Ln²⁺ and Ln⁴⁺ are intensely coloured. [4] - (c) In the broadband decoupled (¹³C{¹H}) spectrum of the *cis* and *trans* forms of W(CH₃)₂(CO)₄, how many ¹³C resonance peaks would you expect? Justify your answer. (NB: Take W as NMR inactive). [4] - (d) Explain why the proton decoupled ³¹P NMR spectrum of *trans*-Pt[PMe₃]₂Cl₂ consists of three resonances with intensity ratios 1:4:1. Predict the expected features in the ³¹P NMR spectrum of *cis*-Pt[PMe₃]₂Cl₂. (¹⁹⁵Pt, *I* = 1/2, 33.8% abundant). [4] - (e) The ¹⁹F NMR spectrum of a sample containing the [BF₄] anion consisted of a quartet of equal intensity peaks (total relative intensity 80%) and a septet of equal intensity resonances (total relative intensity 20%). Explain this observation. [4] ### **QUESTION 3 [20 MARKS]** A student has prepared a sample of $[Zn(en)_3]Cl_2$ (en = $H_2NCH_2CH_2NH_2$) but is worried that the complex appears blue when $[Zn(en)_3]Cl_2$ should be colourless. The student wonders if she picked up a bottle of nickel(II) chloride instead of zinc(II) chloride. The experimental CHN analysis for the complex is C 23.00%, H 7.71% and N 26.92%. - (a) Do the elemental analytical data distinguish between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂? Comment on your answer. [8] - (b) How would mass spectrometry help you to distinguish between the two compounds? - (c) Suggest why ¹H NMR spectroscopy might be useful in distinguishing between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂. [2] - (d) Suggest why UV-VIS spectroscopy might be useful in distinguishing between [Zn(en)₃]Cl₂ and [Ni(en)₃]Cl₂ [2] - (e) A single crystal X-ray diffraction study was carried out and confirmed the presence of [M(en)₃]Cl₂. Can this technique unambiguously assign M to Zn or Ni? [2] - (f) How would you confirm the presence of the chloride ion? [2] ### **QUESTION 4 [20 MARKS]** - a) 12.915 g of a biochemical substance containing only carbon, hydrogen, and oxygen was burned in an atmosphere of excess oxygen. Subsequent analysis of the gaseous result yielded 18.942 g carbon dioxide and 7.749 g of water. Determine the empirical formula of the substance. [8] - b) Consider the two structures given below. Briefly explain how you can distinguish the two structures from each other based on: - 1. ¹H NMR and; - 2. ${}^{31}P{}^{1}H} NMR.$ Use suitable diagrams to illustrate your answer. [4] HO HO HO P(OH)₃ Phosphorous acid (minor tautomer) H₃PO₃ [4] c) An ESI MS spectra of a [Co(en)₃]Cl₃ complex is shown. Assign the peaks marked with m/z values and state the molecular ion peak. Show your calculations clearly. [8] Fig 1: Positive-ion ESI MS spectra of the complex [Co(NH₂CH₂CH₂NH₂)₃]Cl₃ in methanol solvent # General data and fundamental constants | Quantity | Symbol | Value | | | | |--|---|--|--|--|--| | Speed of light Elementary charge Faraday constant Boltzmann constant Gas constant | c e $F = N_A e$ k $R = N_A k$ | 2.997 924 58 X 10 ⁸ m s ⁻¹ 1.602 177 X 10 ⁻¹⁹ C 9.6485 X 10 ⁴ C mol ⁻¹ 1.380 66 X 10 ²³ J K ⁻¹ 8.314 51 J K ⁻¹ mol ⁻¹ 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | | | | Planck constant Avogadro constant Atomic mass unit | $h = h/2\pi$ N_A u | 6.626 08 X 10 ⁻³⁴ J s
1.054 57 X 10 ⁻³⁴ J s
6.022 14 X 10 ⁻²³ mol ⁻¹
1.660 54 X 10 ⁻²⁷ Kg | | | | | Mass electron proton neutron Vacuum permittivity Vacuum permeability | m_e m_p m_n $\varepsilon_o = 1/c^2 \mu_o$ $4\pi\varepsilon_o$ μ_o | 9.109 39 X 10 ⁻³¹ Kg
1.672 62 X 10 ⁻²⁷ Kg
1.674 93 X 10 ⁻²⁷ Kg
8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹
4π X 10 ⁻⁷ T ² J ⁻¹ C ⁻² m ³ | | | | | Magneton Bohr nuclear g value Bohr radius Fine-structure constant Rydberg constant Standard acceleration of free fall Gravitational constant | $\mu_{B} = e h/2m_{e}$ $\mu_{N} = e h/2m_{p}$ g_{e} $a_{o} = 4\pi e_{o} h/m_{e}e^{2}$ $\alpha = \mu_{o}e^{2}c/2h$ $R_{\infty} = m_{e}e^{4}/8h^{3}c$ g G | 7,297 35 X 10 | | | | | Conversion factors 1 cal 4.184 1 eV 1.602 | | erg 1 X 10 ⁻⁷ J
eV/molecule 96 485 kJ mol ⁻¹
23.061 kcal mol ⁻¹ | | | | | f p n · μ
femto pico nano micro
10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶ | milli centi c | l k M G Prefixes
leci kilo mega giga
10 ⁻¹ 10 ³ 10 ⁶ 10 ⁹ | | | | # PERIODIC TABLE OF ELEMENTS | 1 , | 7 | 6 | نار کا
ا | 4 | ω | 'n | jund . | PERIODS | | |----------------------------|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-------------------------------------|------------------------|------------|--------| | *Lanthanide Series | 223
Fr
87 | 132.91
Cs
55 | 85,468
• Rb
37 | 39.098
K
19 | 22,990
Na
11 | 6.941
Li
3 | 1.008
H
1 | 1
IA | | | de Serie | 226.03
R.a
88 | 137.33
Ba
56 | 87.62
St
38 | 40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be
4 | | 2
IIA | | | ···· | (227)
*** Ac
89 | 138.91
*La
57 | 88.906
Y
39 | 44.956
Sc
21 | | | | 3
IIIB | | | 140.12
Ce
58 | (261)
Rf
104 | 178.49
Hf
72 | 91.224
Zr
40 | 47.88
Ti
22 | | | | 4
IVB | | | 140.91
Pr
59 | (262)
Ha
105 | 180.95
Ta
73 | 92.906
Nb
41 | 50.942
V
23 | | | | ₽
S | | | 144.24
Nd | | | 95.94
Mo
42 | 51.996
Cr
24 | TRAN | • | | VIB 6 | | | (145)
Pm
61 | (262)
Uns
107 | 186.21
Re
75 | 98.907
Tc
43 | 54.938
Mn
25 | TRANSITION ELEMENTS | | | 7
VIIB | | | 150.36
Sm
62 | (265)
Uno
108 | 190.2
Os
76 | 101.07
Ru
44 | 55.847
Fe
26 | Mata | | | ∞ | £ | | 151.96
Eu
63 | (266)
Une
109 | 192.22
Ir
77 | 102.91
Rh
45 | 58.933
Co
27 | ENTS | | | VIIIB
9 | GROUPS | | 157.25
Gd
64 | (267)
Uun
110 | 195.08
Pt
78 | 106.42
Pd
46 | 58.69
Ni
28 | | | | 10 | | | 158.93
Tb
65 | | 196.97
Au
79 | 107.87
Ag
47 | 63,546
Cu
29 | | Atomic mass
Symbol
Atomic No. | | ⊞□ | | | 162.50
Dy
66 | • | 200.59
Hg
80 | 112.41
Cd
48 | 65.39
Zn
30 | | | | 12
IIB | | | 164.93
H.o
67 | | 204.38
T1
81 | 114.82
In
49 | 69.723
Ga
31 | 26.982
Al
13 | 8.
118.01 | | ∏ A | | | 167.26
Er
68 | | | | 72.61
Ge
33 | 28,086
Si
14 | 12.011
C
6 | | IVA | | | 168.93
Tm
69 | | 208.98
Bi
83 | 121.75
Sb
51 | 74,922
A.s
33 | 30.974
P
15 | 14.007
N
7 | | 15
VA | | | 173.04
Yb
70 | | (209)
Po
84 | 127.60
Te
52 | 78.96
Se
34 | 32.06
S
16 | 8
O
666'51 | | AIV
16 | | | 174.97
Lu
71 | | (210)
At
85 | 126.90
I
53 | 79.904
Br
35 | 35,453
CI
17 | 6
A
866'81 | | 17
VIIA | | | | | (222)
R n
86 | 131,29
Xe
54 | 83.80
Kr
36 | 39.948
Ar
18 | 20.180
Ne
10 | 4,003
He
2 | VIIIA | | **Actinide Series 232.04 Th 90 238.03 U 92 237.05 Np 93 (244) Pu 94 (243) **Ann** 95 (247) % **C** 97 97 97 88 Cf 98 98 (252) E.s 99 (257) Fign 100 (258) **Md** 101 (259) No 102 (260) Lr 103 () indicates the mass number of the isotope with the longest half-life.