UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2020/2021

TITLE OF PAPER:

INTRODUCTORY CHEMISTRY I

COURSE NUMBER:

CHE151

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE TWO (2) SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY TWO (2) QUESTIONS FROM SECTION B.

SECTION A IS WORTH 50 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE <u>ANSWER SHEET</u> FOR SECTION A IS ATTACHED TO THE QUESTION PAPER. GIVE YOUR ANSWERS TO THE QUESTIONS IN THIS SECTION BY MAKING A CROSS IN THE GRID PROVIDED, SEE EXAMPLES BELOW. THERE CAN ONLY BE <u>ONE</u> CORRECT ANSWER.

Question	Α	В	C	D	E
1			X		
2	X				

AT THE END OF THE EXAM, BEFORE YOU LEAVE, PLACE THE ANSWER SHEET FOR SECTION A INSIDE THE UNESWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION A

MULTIPLE CHOICE [50 MARKS]

Indicate the best option for each of the following multiple choice questions:

1.	One angstrom, symbolized A (A) 10 ²⁴ (D) 10 ⁻³⁰	A_{1} , is 10^{-10} m. $1 \text{ cm}^{3} = 1$	Å ³
	(A) 10^{24}	(B) 10^{-24}	(C) 10^{30}
	(D) 10^{-30}	(E) 10^{-9}	
2.		its for expressing velo	city is miles/hour. The SI unit for
	velocity is	(T) 1 /	(C) fl
	(A) km/hr	(B) km/s	(C) m/hr
	(D) m/s	(E) cm/s	
3.	What is the symbol of the el-	ement lead?	
	(A) Ld	(B) Pb	(C) Sn
	(D) Hg	(E) Le	
4.	A combination of sand, salt	and water is an example	le of a
''	(A) homogeneous mixture	(B) compound	(C) solid
	(D) pure substance	(E) heterogeneous m	nixture
5.	Which one of the following	has the element name	and symbol correctly matched?
<i>J</i> .	(A) P, potassium	(B) C, copper	(C) Mg, manganese
	(D) Ag, silver	(E) Sn, silicon	
6.	The quantum n	umber defines the shar	oe of an orbital.
0.	(A) spin	(B) magnetic	(C) principal
	(D) angular momentum		
	• • •		
7.	Of the following, only	is a chemical r	eaction.
	(A) melting of lead	(B) dissolving sugar	'in water
	(C) tarnishing of silver		es
	(E) dropping 10 cents into a	glass of water	
8.	Which of the following ha	s the same number of	f significant figures as the number
	1.00310?		
	(A) 1×10^6	(B) 199.791	(C) 8.66
	(D) 5.119	(E) 100	
9.	Which atom has the largest	number of neutrons?	
	(A) phosphorus-30	(B) chlorine-37	(C) potassium-39
	(D) argon-40	(E) calcium-40	
	· · · · · · · · · · · · · · · · · · ·		

10.	An atom of the mos	t common isotope of g	old, ¹⁹⁷ Au, has	protons,
	neutrons,	and electron (B) 118, 79, 39 (E) 79, 118, 79	ns.	1.07
	(A) 197, 79, 118	(B) 118, 79, 39	(C) 79, 197,	197
	(D) 79, 118, 118	(E) 79, 118, 79		
11.	The element X has the abundances of the isot the element is	opes are given in the tab	isotopes. The masses (gle below. The average ato	/mol) and % omic mass of
	Isotope	Abundance (%)	Mass (g/mol)	
	15X	28.60	15.33	
	17 _X	13.30	17.26	
	18X	58.10	18.11	
	(A) 1720	(B) 16.90	(C) 17.65	
	(A) 17.20 (D) 17.11	(E) 15.90	(0)	
10	Which one of the follo	swing is a non-metal?		
12.		(B) Sr	(C) Br	
	(A) W (D) Os	(E) Ir	(0) = -	
		,		
13.	(A) either a metal or r	netalloid (B or a non-metal (D	r of the periodic table is b) definitely a metal c) definitely a non-metal	•
14.	(A) C ₂ H ₂ , C ₆ H ₆	not have the same empir (B) CO, CO ₂ (E) C ₂ H ₅ COOCl	(C) C_2H_4 , C_3H_6	
15.	Which species has 16 (A) ³¹ P (D) ⁸⁰ Br	protons? (B) ³⁴ S ²⁻ (E) ¹⁶ O	(C) ³⁶ Cl	
16.	Which of the followin (A) H ₂ O (D) SO ₂	g compounds would you (B) CO ₂ (E) H ₂ S	expect to be ionic? (C) SrCl ₂	
17.	Which species below (A) $SO_2^{2^-}$ (D) $SO_4^{2^-}$	is the sulphite ion? (B) SO_3^{2-} (E) HS^-	(C) S ²⁻	
18.		mperature that correspon		
	Useful Equations: of	$F = \frac{9}{5}$ °C + 32; °C = $\frac{5}{9}$ ($^{\circ}F - 32^{\circ}$); $K = ^{\circ}C + 273$	
		6 (C) 290 (I		

19.		ity of 2.67 g/cm^3 . Wh	at would be the mass in Kg of 30	.5
	mL of this liquid? (A) 81.4 (D) 0.0814	(B) 11.4 (E) 0.0114	(C) 0.0875	
20.	Which formula/name pair is (A) Mn(NO ₂) ₂ /manganese(C) Mg(NO ₃) ₂ /magnesium(E) Mg(MnO ₄) ₂ /magnesium	(II) nitrite (B) M (IV) nitrate (D) M	g(NO ₃) ₂ /magnesium nitrate g ₃ N ₂ /magnesium nitride	
21.	When the following equation $A1 + H_2O \rightarrow A1(O)$	on is balanced, the coef	ficient of Al is	
	(A) 1 (D) 5	(B) 2 (E) 4	(C) 3	
22.	There are sulp (A) 1.5 x 10 ²⁵ (D) 50	hur atoms in 25 molecu (B) 4.8 x 10 ²⁵ (E) 6.02 x 10 ²³	ales of $C_4H_4S_2$. (C) 3.0×10^{25}	
23.	The formula weight of pota (A) 107.09 (D) 294.18	(B) 255.08 (E) 333.08	Cr ₂ O ₇ , is g/mol. (C) 242.18	
24.	The mass % of F in the bins (A) 18.48 (D) 81.52	ary compound KrF ₂ is (B) 45.38 (E) 31.20	(C) 68.80	
25.	How many grams of sodium (A) 3.121 × 10 ⁻⁵ (D) 9.100 × 10 ⁻⁵	(B) 1.011×10^{-5}	contain 1.773 × 10 ¹⁷ carbon atoms (C) 1.517 × 10 ⁻⁵	:?
26.	A sample of CH_2F_2 with a real (A) 2.2×10^{23} (D) 4.4×10^{23}	mass of 19 g contains _ (B) 38 (E) 9.5	atoms of F. (C) 3.3×10^{24}	
27.	The concentration (M) of a solution was diluted to 0.80 (A) 0.800 (D) 0.400	an aqueous methanol p 00 L is M. (B) 0.200 (E) 8.000	oroduced when 0.200 L of a 2.00 (C) 0.500	M
28.	All of the orbitals in a give number.		me value of the quantu	ım
	(A) principal(D) A and B	(B) azimuthal (E) B and C	(C) magnetic	

29.	Which of the subshells below quantum number?	do <u>not</u> exist due to t	he constraints upon the azimuthal
	(A) 2d	(B) 2s (E) none of the above	(C) 2p
30.	An electron <u>cannot</u> have the q (A) 6, 1, 0 (D) 1, 0, 0	nuantum numbers n = (B) 3, 2, 3 (E) 3, 2, 1	(C) 3, 2, -2
31.	The orbital is degenerated (A) 5s (D) 5d _{xy}	enerate with 5p _y in a m (B) 5p _x (E) 5d ²	nany-electron atom. (C) 4p _y
32.		are there in a ground (B) 1 (E) 4	state nitrogen atom? (C) 2
33.	Which one of the following is nitrogen (N) atom?	the correct electron co	onfiguration for a ground-state
	$(A) \boxed{\uparrow\downarrow} \boxed{\uparrow\downarrow}$	↑↓ ↑ <u> </u>	
	1s 2s	2p	
	(B)	\uparrow \uparrow \uparrow	
	1s 2s	2p	
	(C) ↑↑ ↑↓	\uparrow \uparrow \uparrow	
	1s 2s	2p	
	(D)	\uparrow \uparrow \uparrow	
	1s 2s	2p	
	(E)	\uparrow \uparrow \uparrow	
	1s 2s	2p	

34.	The ground state electron configuration of Fe is (A) $1s^22s^22p^63s^23p^63d^6$ (B) $1s^22s^22p^63s^23p^63d^64s^2$ (C) $1s^22s^23s^23p^{10}$ (D) $1s^22s^22p^63s^23p^64s^2$ (E) $1s^22s^22p^63s^23p^64s^24d^{6}$
35.	What is the electron configuration for the V^{3+} ion? (A) $[Ar]3d^4$ (B) $[Ar]4s^23d^2$ (C) $[Ar]3d^2$ (D) $[Ar]4s^23d^8$ (E) $[Ar]4s^2$
36.	Which two elements have the same ground-state electron configuration? (A) Pd and Pt (B) Co and Cd (C) Fe and Cu (D) Cl and Ar (E) No two elements have the same ground-state electron configuration
37.	In which set of elements would all members be expected to have very similar chemical properties? (A) O, S, Se (B) N, O, F (C) Na, Mg, K (D) S, Se, Si (E) Ne, Na, Mg
38.	Which isoelectronic series is correctly arranged in order of increasing radius? (A) $K^+ < Ca^{2+} < Ar < Cl^-$ (B) $Cl^- < Ar < K^+ < Ca^{2+}$ (C) $Ca^{2+} < Ar < K^+ < Cl^-$ (D) $Ca^{2+} < K^+ < Ar < Cl^-$ (E) $Ca^{2+} < K^+ < Cl^- < Ar$
39.	Of the choices below, which gives the order for first ionization energies? (A) Cl > S > Al > Ar > Si (B) Ar > Cl > S > Si > Al (C) Al > Si > S > Cl > Ar (D) Cl > S > Al > Si > Ar (E) S > Si > Cl > Al
40.	Based on the octet rule, magnesium most likely forms a ion. (A) Mg ²⁺ (B) Mg ²⁻ (C) Mg ⁶⁻ (D) Mg ⁶⁺ (E) Mg ⁻
41.	Which of the following would have to lose two electrons in order to achieve a noble gas configuration? O Sr Na Se Br (A) O, Se (B) Na (C) Sr, O, Se (D) Br (E) Sr
42.	Of the following elements, which one has the most negative electron affinity? (A) S (B) Cl (C) Se (D) Br (E) I
43.	A solution of iron(III) chlorate contains the ions (A) Fe^{3+} and ClO_4^- (B) Fe^{3+} and ClO^- (C) Fe^{3+} and ClO_3^- (D) Fe^{3+} and ClO_2^- (E) Fe^{2+} and ClO_4^-

44.	Which of the following is the	e phosphide ion?	(C) P ³⁻
	(A) PO_3^{3-} (D) P^{2-}	(B) PO ₄ ³⁻ (E) P ⁻	(C) r
45.	Of the following, only	is not a metalle	oid.
	(A) B	(B) Al	(C) Si
	(D) Ge	(E) As	
46.	What is the charge on the irc		?
	(A) +1	(B) $+2$	(C) +3
	(D) -5	(E) -6	
47.	What is the coefficient of O ₂		quation is balanced?
	$C_2H_4 + O_2 \rightarrow CO_2$		(C) 4
	(A) 2 (D) 5	(B) 3 (E) 1	(C) T
48.	constituent elements: $2NaN_3(s) \rightarrow 2Na(s)$	$+ 3N_2(g)$	(aN_3) decomposes explosively to its composition of 2.88 mol of sodium
	(A) 1.92	(B) 8.64	(C) 4.32
	(D) 0.960	(E) 1.44	
49.	NaOH. It took 51.2 mL concentration (M) of the acid (A) 1.02	of the base to reach	stration was titrated with 0.113 M the endpoint of the titration. The (C) 0.454
	(D) 0.113	` ,	
50.	What volume (L) of 0.250 dissolving 17.5 g NaOH in 3	M HNO ₃ is required t 350 mL of water?	to neutralize a solution prepared by
	(A) 1.75	(B) 0.44	(C) 50.0
	(D) 0.070	(E) 1.75×10^{-3}	
	<-> 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	• •	

SECTION B

ANSWER ANY TWO OF THE THREE QUESTIONS [50 MARKS]

QUESTION ONE [25 Marks]

- In a titration, 3.25 g sample of an acid, HX, requires 68.8 mL of a 0.750 M NaOH(aq) (a) solution for complete reaction. What is the molar mass of the acid? [5] How many possible values for l and m_l are there when n = 3? [2] (b) (i) Give the values for n, l, and m_l for (ii) $[1\frac{1}{2}]$ each orbital in the 2p subshell. (1) $[1\frac{1}{2}]$ each orbital in the 5d subshell. (2)
- (c) Which of the following are permissible sets of quantum numbers for an electron in a hydrogen atom? For those combinations that are permissible, write the appropriate designation for the subshell to which the orbital belongs (e.g. 1s, and so on). For those that are not permissible briefly explain why they are not permissible.

011000	, , , , , , , , , , , , , , , , , , ,		[0]
(i)	$n=2, l=1, m_l=1;$		[2]
· /			[2]
(11)	$n=1, l=0, m_l=-1;$		[2]
` '	$n=3, l=3, m_l=0$?		[2]
· /			

- (d) Write the condensed electron configurations for the following atoms, using the appropriate noble-gas core abbreviations and indicate how many unpaired electrons each has:
 - (i) S (ii) Ga [2]
- (e) (i) Obtain the fractional abundances for the two naturally occurring isotopes of europium. The masses of the isotopes are ¹⁵¹Eu, 150.9196 g/mol; ¹⁵³Eu, 152.9209 g/mol. The atomic weight is 151.9641 g/mol. [3]
 - (ii) You have a stock solution of 14.8 M NH₃. How many millilitres of this solution should you dilute to make 100.0 mL of 0.250 M NH₃. [2]

QUESTION TWO [25 Marks]

(a)	(i) (ii)	The oxygen molecule consists of two oxygen atoms a distance of 121 pm apart. How many millimeters is this distance? [1] Give the normal state (solid, liquid, or gas) of each of the following: (1) carbon monoxide [1] (2) lead [1]
(b)	(i) (ii) (iii)	Write the formula of magnesium carbonate $$. [1] Give a systematic name to the binary compound AsH ₃ . [1] A fluoride of xenon is prepared by reacting 0.2045 g of Xe with excess F ₂ to form 0.3229 g of product. Determine the molecular formula of the product. [5]
(c)	(i)	A colourless liquid, used as a solvent is believed to be one of the following: Substance Density (in g/mL) n-butyl alcohol ethylene glycol 1.114 isopropyl alcohol jo.785 toluene 0.866 To identify the substance, a chemist determined its density. By pouring a sample of the liquid into a graduated cylinder, she found that the volume was 35.1 mL. She also found that the sample weighed 30.5 g. (1) What was the density of the liquid? (2) What was the substance? A temperature reading of 77 °F is measured with a Fahrenheit thermometer. What reading would this temperature give if a kelvin thermometer were used?
(d)	(i)	For each of the following, write the measurement in terms of an appropriate prefix and base unit. For example, $1.6 \times 10^{-6} \text{ m} = 1.6 \mu\text{m}$. (1) The radius of an oxygen atom is about 0.00000000066 m . [1] (2) The wavelength of a certain ultraviolet radiation is 0.000000056 m . [1] A nucleus consists of 17 protons and 18 neutrons. What is its nuclide symbol?
(e)		ral brands of antacids use Al(OH) ₃ to react with stomach acid, which contains rily HCl: Al(OH) ₃ (s) + HCl(aq) → AlCl ₃ (aq) + H ₂ O(l) Balance this equation. [1] Calculate the number of grams of HCl that can react with 0.500 g of Al(OH) ₃ . [2] Calculate the number of grams of AlCl ₃ and the number of grams of H ₂ O formed when 0.500 g of Al(OH) ₃ reacts. [4] Show that your calculations in parts (ii) and (iii) are consistent with the law of conservation of mass. [1]

QUESTION THREE [25 Marks]

- You have the mythical metal element "X" that can exist as X^+ , X^{2+} , and X^{5+} ions. What would be the chemical formulae for compounds formed from the combination of each of the X ions and SO_4^{2-} ? [3]
- (b) (i) Phosphorus oxychloride is the starting compound for preparing substances used as flame retardants for plastics. An 8.53 mg sample of phosphorus oxychloride contains 1.72 mg of phosphorus. What is the mass percentage of phosphorus in the compound? [1]

(ii) Which contains more carbon, 6.01 g of glucose, C₆H₁₂O₆, or 5.85 g of ethanol, C₂H₆O? [2]

- (iii) A sample of NaNO₃ weighing 0.38 g is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck, dissolving the solid. What is the molarity of the resulting solution? [2]
- (c) A 1.000 L sample of polluted water was analysed for lead(II) ion, Pb²⁺, by adding an excess of sodium sulphate to it. The mass of lead(II) sulphate that precipitated was 229.8 mg. What is the mass of lead in a liter of the water? Give the answer as milligrams of lead per liter of solution. [3]
- (d) (i) Which of the following orbital diagrams or electron configuration are possible and which are impossible according to the Pauli exclusion principle? Explain.

 $(2) \quad \begin{array}{c|c} \uparrow \downarrow & \uparrow \\ \hline 1s & 2s & \end{array} \quad \begin{array}{c} \uparrow \uparrow \\ \hline 2p & \end{array}$

(3) $1s^2 2s^1 2p^7$ [2]

(ii) An expected experimental outcome is 37.45 grams. Describe the following data sets as accurate and/or precise by selecting "yes" or "No" in each case.

Data (g) Accurate? Precise?

(1) 37.15, 37.44, 37.75 [1]

(2) 39.43, 37.45, 38.64 [1]

(e) (i) Write the electron configurations of

(1) Fe²⁺ [1]
(2) P³⁻ [1]
How many significant figures are in the number 0.0034050? [1]

(ii) How many significant figures are in the number 0.0034050? [1]
(iii) Potassium is a soft, silvery-coloured metal that melts at 64 °C. It reacts vigorously with water, with oxygen, and with chlorine.

(1) Identify all of the physical properties given in this description. [1½]

(2) Identify all of the chemical properties given. [1½]

Periodic Table of the Elements

Groups

									PERIODS		
*	*	7	9	22	4	(J)	2		TOI		
**Actinide Series	*Lanthanide Series	Fr 87	132.91 Cs	85.468 Rb 37	39.098 X	N2.990	6.941	1.008	S IA		
e Series	ide Seri	8% 7. 26.03	Ba 56	87.62 Sr 38	Ca	12 12	9.012 Be				
•	es	** Ac	* L , a	¥ 39	44.956 Sc 21	The state of the s			IIA	2	
232.04 Th 90	Ce S8	Rf	Hf 72	72 7	47.88 1				IIIB	ω	
231.04 Pa 91	Pr 59	105	Ta 73	Nb	50.942 V 23				IVB	4	
238.03 U 92		-	W 74			-			VB	5	
						ANSI			VIB	6	
Np 93	Pm 61	Uns 107	Re	Tc	25 25	NOI			VIIB	7	
Pu 94	Sm	Uno 108	76 76	# R	Fe 26	ELEM				8	
Am 95	Eu	Une 109	192.22 17 77	Rh	Co 27	TRANSITION ELEMENTS			VIIIB	9	CIOUCO
Cm 96	G 2	Uun 110	78 78	Pd	28	50 00	·			10	CO
8k	d 6	158 03	Au 79	A.G.	107.87	63 546	Atomic MassSymbol Atomic No		B	11	
% Cf	Dy 66	162.50	H _o	Cd 48	Zn 30	06.59	Mass bol No		IIB	12	
99 99	Ho	164.93	81	In 49	G 2	Al 13	10.811 B		ША	13	_
Fm 100	68	167.26	Pb	Sn 50	32 118.71	72.61	12.011		IVA	14	
Ma	Tm	168.93	82 5 2	Sb	As 33	P 15	14.007 N 7		VA	15	1
No 102	Yb	173.04	Po	Te 52	Se 34	78.96	\$0.05 \$ \$ \$		VIA	16	`
103	71 2	174.97	A.t.	53	Br	79,904	18.998 FA 9		VIIA	17	3
L	<u> </u>		86 86	Xe 54	36	Ar 18	20.180 Ne 10	1.00 2	VIIIA	18	5

() indicates the mass number of the isotope with the longest half-life

UNIVERSITY OF ESWATINI

CHE151 MAIN EXAMINATION ANSWER SHEET	ACADEMIC YEAR	
	2020/2021	
Course Title: Introductory Chemistry I	Stud.	
ANSWER SHEET FOR SECTION A OF EXAM	ID No.	
Programme:		
INSTRUCTION: Place an X over the "box" corresponding to the correct answer		

Q. No.					<u></u>
1	Α	В	C	D	E
2	Α	В	С	D	E
3	Α	В	С	D	E
4	Α	В	С	D	E
5	Α	В	С	D	E
6	Α	В	С	D	E
7	Α	В	С	D	E
8	Α	В	С	D	E
9	Α	В	С	D	E
10	Α	В	С	D	E
11	Α	В	С	D	Е
12	Α	В	С	D	E
13	Α	В	С	D	Е
14	Α	В	С	D	Е
15	Α	В	С	D	E
16	Α	В	С	D	E
17	Α	В	С	D	E
18	Α	В	С	D	E
19	Α	В	С	D	E
20	Α	В	С	D	E
21	Α	В	С	D	E
22	Α	В	С	D	E
23	Α	В	С	D	E
24	Α	В	С	D	E
25	Α	В	С	D	E

Q. No.] .				
26	Α	В	С	D	E
27	Α	В	С	D	E
28	Α	В	С	D	E
29	Α	В	С	D	E
30	Α	В	С	D	E
31	Α	В	С	D	E
32	Α	В	С	D	E
33	Α	В	С	D	E
34	Α	В	С	D	E
35	Α	В	С	D_	E
36	Α	В	С	D	E
37	Α	В	С	D	E
38	Α	В	С	D	E
39	Α	В	С	D	E
40	Α	В	С	D	E
41	Α	В	С	D	E
42	Α	В	C	D	E
43	Α	В	С	D	E
44	Α	В	С	D	E
45	Α	В	С	D	E
46	Α	В	С	D	E
47	Α	В	С	D	E
48	Α	В	С	D	E
49	Α	В	С	D	E
50	Α	В	С	D	E

Avogadro's number			$= 6.02214 \times 10^{23} / \text{mol}$	
atomic mass unit			$= 1.66054 \times 10^{-27} \text{ kg}$	
charge of the electron (or proton)		C	$= 1.60218 \times 10^{-19} \mathrm{C}$	
Faraday constant		F	$= 9.64853 \times 10^4$ C/mol	•
mass of the electron		m.	$= 9.10939 \times 10^{-31} \text{ kg}$	
mass of the neutron			$= 1.67493 \times 10^{-27} \text{ kg}$;
mass of the proton		m_{p}	$= 1.67262 \times 10^{-27} \text{ kg}$	
Planck's constant			$= 6.62607 \times 10^{-34} \text{ J} \cdot \text{s}$;
speed of light in a vacuum		с	$= 2.99792 \times 10^8 \text{ m/s}$;
standard acceleration of gravity	,	g	$= 9.80665 \text{ m/s}^2$	į
universal gas constant	-		= 8.31447 J/(mol·K)	1
			$= 8.20578 \times 10^{-2} (atm L)/(mol \cdot K)$	i
			` , ` ,	

Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

SI Unit Prefixes

•			,					
p	n	μ	m	c	d	k	M	G
pico-	nano-	micro-	milli-	centi-	deci-	kilo-	mega-	giga-
10-12	10-9	10-6	10^{-3}	10^{-2}	10-1	10^{3}	106	109
		and the second s						

Conversions and Relationships

Volume

SI unit: cubic meter, m³

= 1 liter (L)

= 1.057 quarts (qt)

 $1 \, d\dot{m}^3 = 10^{-3} \, m^3$

 $1 \text{ cm}^3 = 1 \text{ mL}$

Length SI unit: meter, m = 1000 m 1 km = 0.62 mile (mi) 1 inch (in) = 2.54 cm = 1.094 yards (yd) = 10^{-12} m = 0.01 Å rn 1 $1 \text{ m}^3 = 35.3 \text{ ft}^3$ 1 pm

Mass Energy SI unit: kilogram, kg SI unit: joule, J $= 10^3 g$ $JJ = 1 \text{ kg·m}^2/\text{s}^2$ = 2.205 lb= 1 cowomb volt (1 C·V) 1 metric ton (t) = 10^3 kg · 1 cal = 4.184 J $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

Temperature SI unit: kelvin, K 0 K= -273.15°C mp of $H_2O = 0^{\circ}C$ (273.15 K) bp of $H_2O = 100^{\circ}C (373.15 \text{ K})$ $= T (^{\circ}C) + 273.15$ T(K)T(°C) $= [T(^{\circ}F) - 32]$ $=\frac{9}{5}T(^{\circ}C) + 32$ T (°F)

Pressure SI unit: pascal, Pa $1 Pa = 1 N/m^2$ $= 1 \text{ kg/m} \cdot \text{s}^2$ $1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$ = 760 torr $1 \text{ bar} = 1 \times 10^5 \text{ Pa}$

Math relationships $\pi = 3.1416$ volume of sphere $=\frac{4}{3}\pi r^3$ volume of cylinder = $\pi r^2 h$

ក្រុមជនបានប្រជាព្រះសម្រាប់ទៅក្រុមបាននូវការប្រហែលការបានប្រការប្រការប្រការប្រការប្រការប្រការប្រការប្រការប្រការប្	
--	--

Soluble Ionic Compounds		Important Exceptions
Compounds containing	NO ₃ -	None
	CH₃COO [™]	None :
	Cl	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	Br ⁻	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	1	Compounds of Ag ⁺ , Hg ₂ ²¹ , and Pb ²⁺
	SO ₄ 2	Compounds of Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}
Insoluble Ionic Compounds		Important Exceptions
Compounds containing	S ²	Compounds of NH ₄ ⁺ , the alkali metal cations, Ca ²⁺ , Sr ²⁺ , and Ba ²⁺
	CO ₃ ²⁻	Compounds of NH ₄ ⁺ and the alkali metal cations
	PO ₄ 3-	Compounds of NH ₄ ⁺ and the alkali metal cations
	OH	Compounds of NH ₄ ⁺ , the alkali metal cations, Ca ²⁺ , Sr ²⁺ , and Ba ²⁺

Metal	Oxidation Reaction			
Lithium	$Li(s) \longrightarrow Li^+(aq) + e^-$			
Potassium	$K(s) \longrightarrow K^{+}(aq) + e^{-}$	有源产		
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$			
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$			
Sodium	$Na(s) \longrightarrow Na^{+}(nq) + e^{-}$			
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$	89		
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$	oxidation increases		
Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$	l B		
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$			
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$	lati		
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$) Xi		
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$	ਰਿ		
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-s}$	Ease		
Tin	$\operatorname{Sn}(s) \longrightarrow \operatorname{Sn}^{2+}(aq) + 2e^{-}$	Ю		
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$			
Hydrogen	$H_1(g) \longrightarrow 2H^1(dq) + 2e$			
Соррег	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$			
Silver	$Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$	<u>i, </u>		
Mercury	$Hg(1) \longrightarrow Hg^{2+}(aq) + 2e^{-}$			
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$			
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$			