UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2020/2021

TITLE OF PAPER:

ADVANCED INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE THREE (3) SECTIONS:

SECTION A, SECTION B AND SECTION C. ANSWER ALL THE QUESTIONS IN SECTION A AND ONE (1) QUESTION FROM EACH OF THE

SECTIONS B AND C.

SECTION A IS WORTH 40 MARKS

AND EACH QUESTION IN SECTIONS

B AND C IS WORTH 30 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A (COMPULSORY)

QUESTION ONE [40 Marks]

- (a) (i) Give the <u>electron count</u> for each metal centre of the following species:
 - (1) $Ir(CO)(NO)(PPh_3)_2$
 - (2) $[PtCl_3(\eta^2-H_2C=CH_2)]$

(3)

(ii) Assign the <u>oxidation state</u> of each metal, M. Assuming the 18-electron rule applies, <u>identify</u> the <u>second row</u> transition metal.

- (1) $[(\eta^5 C_5 H_5)(\eta^4 C_5 H_6)M]^+$
- (2) $[M(CO)_3(PMe_3)]$

(3) $(\eta^5 - C_5 H_5)(\eta^1 - C_3 H_5)(\eta^3 - C_3 H_5)_2 M$ (16-electron complex) [6]

(iii) What charge, z, would be necessary for $[(\eta^3-C_3H_5)V(CNMe)_5]^z$ to obey the 18-electron rule? [1]

(b) (i) Suggest products in the following reactions, and give likely structures for the products:

- (1) Fe(CO)₅ irradiated with C_2H_4
- (2) Re₂(CO)₁₀ with Na/Hg

(3) Ni(CO)₄ with PPh₃

[6]

(ii) Rationalise the observation that on going from Fe(CO)₅ to Fe(CO)₅(PPh₃)₂, absorptions in the IR spectrum at 2025 and 2000 cm⁻¹ are replaced by bands at 1944, 1886 and 1881 cm⁻¹. [4]

(c) (i) Sketch the products of the reaction when the following complex loses (1) one PPh₃ (2) one CO [4]

(ii) Draw the structures of the <u>three</u> complexes $(cyclo-C_7H_7)Co(CO)_n$ (n = 1, 2 and 3) assuming that the complexes obey the 18-electron rule. [6]

- Sketch interactions of 1,3-butadiene, (CH₂=CH-CH=CH₂) with a metal (d) (i) atom via
 - (1)
 - $\frac{\eta^2}{\eta^4}$ (2)

[4]

There is one oxidative addition reaction and one reductive elimination (ii) reaction in the figure below. Give balanced chemical equations for them (both) and assign oxidation numbers to all the rhodium complexes in the [6] equations.

The main catalytic cycle in the homogeneous hydrogenation of alkene by rhodium-phosphine complexes, $L = PPh_3$.

SECTION B (ANSWER ANY ONE QUESTION)

QUESTION ONE [30 Marks]

(a) Predict the product of the following reaction and show the structure. Note that the product includes all the atoms of the original complex and of the PMe₃. Describe in as much detail as you can its v(CO) IR spectrum.

Me OC Me PMe OCO PME O

- (ii) The M-P distance in $(\eta^5-C_5H_5)Co(PEt_3)_2$ is 221.8 pm and the P-C distance is 184.6 pm. The corresponding distances in $[(\eta^5-C_5H_5)Co(PEt_3)_2]^+$ are 223 pm and 182.9 pm. Account for the changes in these distances as the former complex is oxidised. [4]
- (b) (i) Inspect the catalytic cycle below. Give the species in the two boxes (marked with "?") and describe each of the steps **A-D** in as much detail as possible. [8]

- (ii) Which of the following constitute genuine examples of catalysis and which do not? Justify your answers.
 - (1) The addition of H₂ to C₂H₄ when the mixture is brought into contact with finely divided platinum.
 - (2) The combination of N₂ gas with lithium metal to produce Li₃N, which then reacts with H₂O to produce NH₃ and LiOH. [4]
- (c) Propose <u>two</u> syntheses for MeMn(CO)₅ both starting with Mn₂(CO)₁₀, with one using Na and one using Br₂. You may use other reagents of your choice. [8]

QUESTION TWO [30 Marks]

- (a) Propose the main steps in the catalytic cycle for the conversion of pent-1-ene to hexanal using HRh(CO)₄ as the catalyst precursor. [8]
- (b) (i) The product of reaction between PtCl₂ and CO at high pressure and 200 °C has a molecular weight of 322. Find the formula and suggest possible isomers. [6]
 - (ii) Write balanced equations for the following reaction types:
 - (1) $(CH_3CH_2)_3Ga + CH_3OH \rightarrow$
 - (2) $Al_2(CH_3)_6 + N(C_2H_5)_3 \rightarrow$ [4]
- Irradiating Fe(CO)₅ with UV light in the presence of cyclopentadiene results in the formation of **A** and colourless gas **B**. **A** has <u>four</u> different ¹H NMR environments in a 2:2:1:1 ratio. Heating **A** further results in the release of more **B** to make **C**, having the formula FeC₇H₆O₂. Molecule **C** reacts rapidly with itself at room temperature to eliminate colourless gas **D**, forming solid **E**. Compound **E** has two strong IR bands, one near 1850 cm⁻¹, the other near 2000 cm⁻¹. Treatment of **E** with Na metal generates solid **F** of empirical formula FeC₇H₅O₂Na. Draw structures of **A** to **F** indicated by the boxes in scheme below. [12]

QUESTION THREE [30 Marks]

- (a) (i) Explain the following: The *cis* isomer of (PPh₃)₂Pd(CH₂CH₃)₂ decomposes immediately to give butane, but the *trans* isomer produces a 1:1 mixture of ethene and ethane. [4]
 - (ii) $Ru(CO)_3L_2$, where $L = PPh_3$ reacts with CH_3I as shown: $Ru(CO)_3L_2 + CH_3I \rightarrow cis$ -Ru($CO)_2(L_2)(CH_3)(I) + CO$ The product features CH_3I oxidatively added cis (C and I have very similar electronegativities). The reaction mechanism involves two steps.
 - (1) After counting the electrons in $Ru(CO)_3L_2$, what is the <u>first step</u> in the mechanism?
 - (2) What is the second step?
 - (3) Sketch the <u>transition state</u> in the <u>second step</u>.
- (b) Examine the scheme below (L = phosphine i.e. PR₃). Give appropriate <u>structures</u> and give <u>electron counts</u> and <u>oxidation states</u> for all palladium complexes. Name reactions A, B, C and D. [10]

(c) Suggest a plausible mechanism for the following reaction:

[10]

[6]

SECTION C (ANSWER ANY ONE QUESTION)

QUESTION ONE [30 Marks]

(a) Identify isotopes A - F in the following sequence of nuclear reactions:

(i)
$$^{238}U \xrightarrow{} A \xrightarrow{} B \xrightarrow{} C$$
 [3]

(ii)
$$\mathbf{D} \xrightarrow{-\beta^{-}} \mathbf{E} \xrightarrow{(\mathbf{n}, \gamma)} {}^{242}\mathrm{Am} \xrightarrow{-\beta^{-}} \mathbf{F}$$
 [3]

- (b) (i) Metal-Metal bonding in multinuclear species is not always clear-cut Solely on the basis of the 18-electron rule, suggest whether $(\eta^5 C_5H_5)Ni(\mu-PPh_2)_2Ni(\eta^5-C_5H_5)$ might be expected to contain a metal-metal bond. [3]
 - (ii) Considering the bonding in metal carbonyls, what factors would affect the C-O stretching vibrations? [3]
 - (iii) A carbonyl complex has linear OC-M-CO group. How will the CO stretching frequency change (increase, decrease or remain the same) when one CO is replaced by triethylamine, (CH₃CH₂)₃N:? Justify your answer.

 [2]
- (c) Suggest what change in cluster structure might accompany the reaction: $[Co_6(CO)_{15}N]^- \rightarrow [Co_6(CO)_{13}N]^- + 2CO$ [6]
- (d) Suggest products for the following reactions.
 - (i) $ClF + BF_3 \rightarrow$ [1]
 - (ii) $CsF + IF_5 \rightarrow$ [1]
 - (iii) $SbF_5 + ClF_5 \rightarrow$ [1]
 - (iv) $Me_4NF + IF_7 \rightarrow$ [1]

(e) Which of the following reactions A-F are oxidative additions? Justify your answers. [6]

QUESTION TWO [30 Marks]

- Use Wade's rules to suggest likely structures for (a) B_5H_9 (i)
 - $[B_8H_8]^{2-}$ [3] (ii) $[Os_8(CO)_{22}]^{2-}$ [3] (iii)

[3]

- Pick out pairs of isoelectronic species from the following list: (b) HF, [NO₂]⁺, NH₃, [H₃O]⁺, [OH]⁻, CO₂ [3]
- Which Ln3+ ion would you expect to show the same colour as (i) (c) (2) Tm^{3+} (3) Sm^{3+} (1) Tb^{3+} [5] Justify your answers.
 - Give a definition of a metal cluster. [1] (ii)
 - What are the two broad classes of metal carbonyl clusters? [1] (iii)
- (d) Predict the structures of
 - [3] $[ICl_4]^-$ (i) [3]
 - $[BrF_2]^+$ (ii) [3] BrICI-(iii)
- Identify the starting isotopes A and B in each of the following syntheses of (e) transactinoid elements:
 - A + ${}^{4}_{2}\text{He} \rightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$ B + ${}^{16}_{8}\text{O} \rightarrow {}^{255}_{102}\text{No} + 5({}^{1}_{0}\text{n})$ [1] (i)
 - [1] (ii)

Periodic Table of the Elements

								PER		
** **	7	6	5	4	ယ	2	—	PERIODS		
*Lanthanide Series **Actinide Series	223 87	132.91 Cs	85.468 Rb 37	39.098 X	12.990 Na	6.941 Li 3	1.008 H 1			
ide Ser e Serie	226.03 Ra 88	137.33 Ba 56	87.62 Sr 38	40.078 Ca 20	14.305 Mg	9.012 Be		IA)maad	
ies	** Ac 89	138.91 * La 57	88.906 Y 39	44.956 Sc 21				IIA	2	
140.12 Ce 58 232.04 Th	[26] Rf	178.49 Hf 72	91.24 Zr 40	47.88 Ti 22			:	IIIB	ယ	
140.91 Pr 59 231.04 Pa 91	(262) Ha	180.95 Ta 73	92.906 Nb 41	50.942 V 23				IVB	4	
144.24 Nd 60 238.03 U	(263) Unb	183.85 W 74	95,94 Mo 42	51.996 Cr 24	TRA			VВ	5	
[145] Pm 61 237.05 Np 93	(262) Uns			54.938 Mn 25	S			VIB	6	
					ONE			VIIB	7	
150.36 Sm 62 (244) Pu 94	(265) Uno	190.2 Os 76		55.847 Fe 26	LEMI				∞	
151.96 Eu 63 (243) Am 95	(266) Une	192.22 Ir 77	Rh	58.69 Co 27	ENTS			VIIIB	9 10) !
157.93 Gd 64 6247) Cm 96	(267) Uun	195.08 Pt 78	Pd 46	58.69 Ni 28					10 I	ŧ
158.93 Tb 65 (247) Bk 97		196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atomic Mass_ Symbol - Atomic No.		Œ	11	
162.50 Dy 66 (251) Cf 98		200.59 Hg 80	112.41 Cd 48	65.39 Zn 30				IIB	12	
164.93 Ho 67 (252) Es 99		204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	10.811 B 5		ША	13	
167.26 Er 68 (257) Fm 100		207.2 Pb 82	118.71 Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C 6	1777	Γ VA	14	
168.93 Tm 69 (258) Md		208.98 Bi 83	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 N 7	* or other control of the control of	VA	15	
173.04 Yb 70 (259) No 102		(209) Po 84	127.60 Te 52	78.96 Se 34	32.06 S	15.999 O 8		VIA	16	
174.97 Lu 71 (260) Lr 103		(210) At 85	126.90 I 53	79.904 Br 35	35.453 C1 17	18.998 JF 9		VIIA	17	
		(222) Rn 86	131.29 Xe 54	83.80. Kr 36	39.948 Ar 18	20.180 Ne	4.003 He	VIIIA	18	

⁽⁾ indicates the mass number of the isotope with the longest half-life