UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2019/2020

TITLE OF PAPER:

ANALYTICAL CHEMISTRY II

COURSE NUMBER:

CHE 638

PROGRAMME

MASTERS IN TEXTILE AND CONSUMER

SCIENCE

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTIONS:

THERE ARE FOUR (4) QUESTIONS IN THIS

PAPER. ANSWER <u>QUESTION ONE</u> (TOTAL 50 MARKS) AND <u>ANY TWO OTHER QUESTIONS</u>

(EACH QUESTION IS 25 MARKS)

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE [50 MARKS]

a) Define the term chromophore.

[1]

b) Identify the chromophore in each of the following molecules which give rise to the lowest energy transition and state which kind of transition it undergoes [2]

i.

ii. CH₃OH

- c) Draw a well labelled diagram of a sinusoidal wave and define each characteristic of the wave. [3]
- d) Several analytical techniques are based on the measurement of light absorbed from the different parts of the electromagnetic spectrum. The following diagram shows part of the electromagnetic spectrum;

			•		
X-rays	P	Visible	Q	Microwave	Radiowaves

- i. Identify the type of electromagnetic radiation found in the regions labelled P and Q. [2]
- ii. Identify which one of the five regions has radiation of the lowest frequency.
- e) Calculate the following;
 - i. The frequency in hertz of a photon at 324.7 nm.

[3]

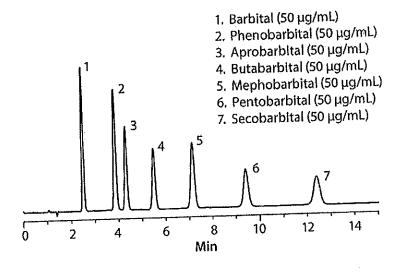
ii. The frequency in hertz of an infrared absorption peak at 3.75 um.

[2]

iii. The wavelength in cm of a photon with a wave number of 1375 cm⁻¹.

[2]

f) Calculate the wavenumber of a beam of infra-red radiation with a wavelength of 5μm. What is the energy in joules of one photon of this radiation described?


[4]

g)	Discus: diagrar	s how $n \rightarrow \pi^*$ transitions differ from $\pi - \pi^*$, use an energy level m and also illustrate using a spectrum.	[4]		
h)	State th	ne Beer-Lambert's law and define all the terms appearing in it.	[4]		
i)	i) A complex formed between Fe (II) and 1,10-phenanthroline has a molar absorptivity of 7000 L cm ⁻¹ mol ⁻¹ at the wavelength of maximum absorption of 435 nm. Calculate				
	i.	the absorbance of a 6.77×10^{-5} M solution of the complex when measured 1 cm cell?	in a [2]		
	ii.	The % transmittance of the solution described in (i) above?	[2]		
	iii.	The pathlength through a 3.40×10^{-5} M solution of a complex that is not for an absorbance that is the same as the solution described in (i) above.	eded [2]		
j)	j) The ultraviolet spectrum of benzonitrile shows a primary absorption band at 224 nm. If a solution of benzonitrile in water, with a concentration of 1x 10 ⁻⁴ molar, is examined at a wavelength of 224 nm, the absorbance is determined to be 1.30. The cell length is 1 cm. What is the molar absorptivity of this absorption band? [4]				
k)	deter a par	Visible spectroscopy is routinely used in analytical chemistry for the quanti- mination of different analytes, such as dyes and biological macromolecule rticular assay, your plot of absorbance versus concentration was not ain the possible reasons for this			
1)	With tube	the aid of a well labelled diagram, describe the operation of the photomulused as a detector in the UV-Visible spectrophotometer.	tiplier [6]		
QUESTION TWO [25 MARKS]					
а	ı) Defi	ne the following terms as used in spectroscopy			
	i.	Triplet and singlet states	[2]		
	ii.	Quenching	[1]		
	iii.	Intersystem crossing	[1]		
	iv.	Attenuation	[1]		
	b) Ext	plain in details why phosphorescence takes longer than fluorescence	[2]		

c)	Discuss what bathochromic and hypsochromic shifts are in the UV-Visible spectrophotometry. What causes these shifts?	[4]
d)	Sketch and label the basic components of a double beam spectrophotometer. Exits advantages over the single beam spectrophotometer.	xplain [6]
e)	Most spectroscopy based instruments require a source of radiation to be directly the sample to be analysed. State any three (3) light sources used in UV-V spectrophotometry and explain how each one of them work, give their advantaged and limitations.	/ 181010
f)	With the aid of a well labelled diagram discuss how a grating monochromator	works [5]
QUE	STION THREE [25 MARKS]	
a)	Sketch the main components of a Gas Chromatography (GC) and explain the format of each of the components identified.	inction [6]
b)	Which kind of compounds are separated by gas chromatography?	[2]
c)	What are the requirements for a carrier gas in GC. Name three (3) gases that a as carrier gases in GC analysis.	re used [4]
d	Explain why the injector (inlet) of a GC must be maintained at 50°C higher to compound with the lowest boiling point.	han the [2]
e	Explain the differences between split and splitless injection mode in GC explisions suitable application for each mode of injection.	aining a [4]
f) Discuss any three (3) properties of an ideal GC detector	[3]
٤	g) Explain the principle of gel permeation/size exclusion chromatography	[4]
QUI	ESTION FOUR [25 MARKS]	
8	a) Define the following terms as used in Chromatography.	
	i. Chromatography	[1]
	ii. Stationary phase	[1]
	iii Adjusted retention time	[1]

	iv. Mobile phase	[1]
b)	Describe the basic principle underlying all chromatographic processes.	[3]
c)	Discuss the factors that causes band broadening in chromatography.	[6]
d)	Differentiate between the following terms as used in Chromatography	
	i. Isocratic and gradient elution	[2]
	ii. Isothermal and temperature programming	[2]

- e) During the chromatographic analysis of a mixture of chlorinated pesticides in which a 2.0 m long column was used, a peak with a retention time (t_R) of 8.68 min and a baseline width of 0.36 min was identified to be dieldrin.
 - i. Calculate the capacity factor, K, for dieldrin if the dead time, t_m, for the column is 0.30 min
 - ii. An adjacent peak to that of dieldrin has a retention time, t_R, of 9.76 min and a baseline width of 0.62 min. Calculate the resolution between the two peaks. Is this resolution sufficient for quantitative analysis, explain. [3]
- f) Given the HPLC chromatogram below for a mixture of barbiturates; assuming that barbital is more polar than phenobarbital which is more polar than Aprobarbital, etc. Was this experiment run under normal or reverse phase conditions? Explain [4]

