UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2019/2020

TITLE OF PAPER: APPLIED POLYMER CHEMISTRY

COURSE NUMBER:

CHE618

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE FOUR (4) QUESTIONS IN THIS PAPER. ANSWER QUESTION ONE (TOTAL 40 MARKS) AND ANY TWO OTHER QUESTIONS (EACH

QUESTION IS 30 MARKS)

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

[8]

Question 1

(a) Define the following terms; (i) Homopolymer (ii) Statistical polymers (iii)Block copolymer (iv)Crystallization temperature [10](v) Hooke's Law (b) Draw the chemical structure of a typical repeat unit of the following 4 classes of polymers; (i) A polyether (ii) A polyurea (iii) A polyamide [12] (iv)A polycarbonate (c) Differentiate between the structures of nylon 6, 6 and nylon-6, 10. In each case, [8] draw the structures of the repeat unit. [4] (d) What do you mean by copolymer? Give two examples. (e) How are polymers classified on the basis of their structure? Give one example of [6] each. Question 2 (a) GPC is a common technique to determine the molecular weight of a polymer. (i) What does GPC stand for? Give two other names for this instrument and explain what each of these names has to do with the functioning of this [7] instrument.

$$R_{\rm p} = k_{\rm p} \left(\frac{R_{\rm i}}{2k_{\rm i}}\right)^{1/2} [\rm M]$$

(b) By clearly stating all your assumptions, show that the steady state rate of

polymerization (R_p) is given by;

- (c) (i) Draw the structure of the monomer of each of the following polymers;
 - (ii) Name at least two applications of each polymer.

[8]

* | |

polyvinyl chloride

nylon-6

(d) Define T_m and T_g and indicate how they are affected by chemical structure [7]

Question 3

(a) By Clearly stating any facts and assumptions, show that the number average degree of polymerization (X_n) is given by; [5]

$$\overline{x}_{n} = \frac{1}{1 - p}$$

- (b) What is the extent of the reaction (p), for good fibers of nylon 6-6 with, Mn = 10,000 g/mol, and $X_n = 110$. Give your answer in percentages, up to 2 decimal places
- (c) What is vulcanization? How it is done?
- [4]

[9]

- (d) Write down five (5) characteristic properties of a good plasticizer. [5]
- (e) Sketch the;
 - (i) ¹H NMR spectrum,
 - (ii) ¹H-decoupled ¹³C NMR spectrum and
 - (i) DEPT135 ¹³C NMR spectrum you would expect to observe for the following polymer.

Isotactic poly(propylene oxide)

(f) Differentiate between addition and condensation polymerization.

[4]

Question 4

(a) Give a scheme for the formation of polycaprolactone from the monomer A, including any catalyst, intermediates and byproducts, and giving the structure of the final product. [15]

- (b) Polycaprolactone has similar materials properties to polyethene: by comparing the molecular structures of the polymers, suggest an explanation for this. [10]
- (c) Why might the use of polycaprolactone be favoured over polyethene? [5]

---The End---