UNIVERSITY OF ESWATINI # **MAIN EXAMINATION 2019/2020** TITLE OF PAPER: ANALYTICAL CHEMISTRY II COURSE NUMBER: **CHE 411** TIME ALLOWED: THREE (3) HOURS INSTRUCTIONS: ANSWER ANY FOUR (4) QUESTIONS #### Special Requirements 1. Data sheet. YOU ARE NOT SUPPOSED TO OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GIVEN BY THE CHIEF INVIGILATOR. 1 #### QUESTION 1 [25] - a) For the VO²⁺/V³⁺ system in acid, calculate the concentration of V³⁺ at pH=3 if the potential measured for a 0.0625M VO²⁺ solution is 0.562V vs SCE [5] - b) Explain, using diagrams and equations, how the selectivity coefficient and ion exchange principles enable fabrication of a pNa electrode. [5] - c) i) With the aid of a diagram, explain how a Saturated Calomel Electrode (SCE) is fabricated, and explain the role of each component in the electrode. - ii) Write down its half cell reaction and Nernst expression. [4] - iii) Calculate the standard electrode potential for the SCE. [3] - iv) Under what conditions will the SCE not work. [2] #### QUESTION 2 [25] - (a) Describe, giving examples of as well as drawings and half cell reactions of, indicator electrodes of - (i) The First Kind - (ii) The Second Kind - (iii) The Third Kind - (b) Write down the Nernst equation, and explain all the terms appearing in it. [3] - (c) In potetiometry, potentials are measured relative to the standard hydrogen electrode (SHE) potential. - i) Draw the SHE, and label all its components - ii) Write down the electrochemical equation taking place within the SHE and state its standard electrode potential - (d) The data below were obtained when a F ion-selective electrode was immersed in a series of standard solutions whose ionic strength was constant at 2.0M. | [F] (M) | <u>E (mV)</u> | |-------------------------|---------------| | 2.35 x 10 ⁻⁵ | -74.8 | | 2.62 x 10 ⁻⁴ | -48.4 | | 2.13 x 10 ⁻³ | -18.7 | | 1.99 x 10 ⁻² | -10.0 | | 2.48 x 10 ⁻¹ | +37.7 | What is the concentration of F in the sample if it gave a reading of -22.5mV 3 [1] | <u>UESTION 3</u> [25] | |-----------------------| - (a) For the electrochemical cell: - $Cu~(s)~/~Cu~Cl_2~(0.0256M)~//~Ag~(CN)^-_2~(0.0355M)~/~CN^-~(0.0435M)~/~(Ag~(s).)$ - i) What component is represented by the symbol "//"? - ii) Use a diagram to explain its role in potentiomentry [3] - iii)Use drawings to show how it is constructed [4] - iv) Use illustrations to explain how it works [2] - v) Calculate ΔG for this cell - vi) Would the cell described above be galvanic as written? - (b) Use equations to describe the role of Ti⁴⁺ intermediate in the coulometric titration of Fe³⁺. [5] - (c) Use diagrams and equations to describe how an amperometric titration of metal ion M²⁺ can be carried out with a one-polarized electrode system. [4] ### QUESTION 4 [25] - a) Indicator and reference electrodes are now combined in compact units to produce an instrument that measures voltages in electroanalytical instruments. - i) With the aid of a diagram, use the ion exchange theory to explain how a compact pH glass membrane electrode works. - ii) Write the Nernst expression for an ideal pH glass electrode, and show that unit calibrations in the readout are in increments of 59mV per decade change of H⁺ concentration. [5] - iii) Explain, using diagrams and equations, how the selectivity coefficient and ion exchange principles enable fabrication of a pNa electrode. [5] - b) i) Outline the steps involved in the calibration of pH glass electrodes. [3] - ii) List two (2) sources of standards used in the calibration of pH glass electrodes. [2] - c) It takes 9.085 minutes to titrate a 10.053g sample of Na₂CO₃ coulometrically in an electrolytic cell with electrogenerated hydrogen ions. The generating current is 205.16 mA in a system incorporating Pt electrodes. Assuming that the endpoint occurs when all CO₃²⁻ has been converted to H₂CO₃, calculate the concentration Na₂CO₃ in the sample in % units. | | 4 | |---|------------| | QUESTION 5 [25] | | | a) Describe the term "overpotential" in relation to the polarography technique, and explain who overpotential is desirable in this electroanalytical technique. | | | b) Draw and label the electrode used in classical polarography and explain how it works. | _ | | c) i) Explain why inert electrolyte such as KNO ₃ is added to solutions in large quantities prior to measurement by classical polarography | | | ii) Explain why nitrogen gas is bubbled through aqueous solutions prior to polarographic measuremen | ts
2] | | d) For each of the following techniques, indicate, on a voltage-time plot, when sampling of the signal carried out. Draw the shape of the resultant voltammogram, and indicate the typical resolution (in Voltand detection limit (in mol/L). | | | l. | 4] | | | [4]
[4] | | QUESTION 6 [25] | | | a) i) Use a diagram to illustrate the dependence of "non-faradaic" current on time during the lifetime of mercury drop in polaragraphy. | | | ii) Use a diagram to illustrate the dependence of "faradaic" current on time during the lifetime of mercury drop in polaragraphy. | | | iii)Use a diagram to illustrate the effect of concentration on "non-faradiac" current during the lifet of a mercury drop in polarography. | | | Λ resistance 0.5 Ω , is to be electrodeposited to 99.995% comple | tion | | with 1A in an open cell (partial pressure of O_2 in air = 0.2 atm). In the equation $E_{app} = E_{cathode} + IR + used to ascertain the potential at which electrodeposition will occur:$ | - ω | | used to ascertain the potential at which cross- | [1] | | i) Calculate E _{cathode} . ii) Calculate E _{anode} . | [1]
[1] | | iii) Calculate the IR drop. iv) Describe the term ω, and explain its origins in electrogravimetry using suitable equations. | [3] | | iv) Describe the term \mathbf{W} , and explain its origins to \mathbf{V} . a) Consider the voltametric titration of \mathbf{TI}^+ with electrochemically generated \mathbf{Br}_2 according to the react | ion | | a) Consider the voltametric titration of 11 with electrochemically goldstand | | | $Tl^+ + Br_2 \iff Tl^{3+} + 2Br^-$, where | • | | $Tl^{3+} + 2e^{-} \iff Tl^{+} \qquad E^{0} = -0.78V \text{vs SCE}$ | | | $E^0 = -1.08V$ vs SCE | ſΩΊ | | i) Draw the current-voltage curves of this titration at the following stages of the thration. | [8] | | f = 0: $f = 0.5$; $f = 1.0$; $f = 1.5$ | רכז | | ii) Plot the titration curve expected for this system using a single indicator electrode. | [2] | | | WHI A | 4,003 | 11 C | Ž. | 316.9E | 83.80 | 4 P | Ž.K | 1 La 1 | i de la companya l | | | | attivity
Sult | |---------------------------------------|--------------------------|-----------|---|---|-----------------------------|--------|--|---------------------------------------|---|--|----------|--------------------|-------------------------|--| | , , , , , , , , , , , , , , , , , , , | | 1 600.0 | 150000000000000000000000000000000000000 | 1.50
1.50 | 25 E | - | The state of s | 12 ES | S X 2 | ara
Prij | | |)
148 | | | <u> 7</u> | 1 | | · | | 22.08
2.5.7 | | 5.000 mm 100 | #.Te | (E) | Alaysia
Panji | 10.001. | g. | Negari
Sari | | | e venezo en la | | | | 925 | ROSESSE CATELONIA | 1000 | | . Sign | 201.92
, ini
, ini | | 161,13 | 8 | | ind
Europe
wobe | | · · · · · · - | - | | hine il e | | | | POWER TO STREET, C. | | 707.7
Pb.
82 | 15 3
16 1
10 1
11 1 | 167.26 | 18 | | in
Line
Little | | Ferencial Control Control | 105. | 111431 | | # 1988
| 28.532
A. | . f | 1 .5
2 .5
2 .5
3 .5
4 .5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 204.18
TT = | sajan
Talik
Talik | 164.91 | 3 5 | (25)
(25) | | | ŢS. | 7 | H. 911 | | Atomic mass 4 Symbol 4 Atomic No. 1 | TO SEE SEE SEE SEE | 1 22 | | 된
전
급 | 200.59
FE | ا نزیز
ماند
ماند | 162.30 | . 66
 | 유유
교 | iol tiag | | MEN | | 110 | | 名配を | | | . Cu | 를 다. | 134.97
SA:0., | | 158.93 | | が | म तम् ।य | | 100 | 10.5 | D 000 000 | | 1 | | 1 | 28.69
 78.69
 728.71 | 1987년
11년 1 | All and the state of | (26)
Tuin
(: iroš | | S. Sandar | 6.5x | 即转机 | | ,
Bleon
eroups | 6 | WITTE | | | 可認 | | 15 P | 新型 | 1922
17
17 | 是
是 | | 3 P | (243)=
Ant
75 : | is and fo | | L
TAB | \$ | | | 6 | ELEM | | 55.847
Ye
26 | 101-03
101-03 | 190.2
Ot | (265)
Und
10f | 150.36 | # 8 | (2/4)
Tu
94 | munder | | ERIODIC TABLE OF ELEMENTS GROUPS | 1 | VIIB | | | transhtion edements | | 54.938
Nin
25 | 98.907
Te | 186.21
Re
75 | (2602)
Tens
107 | | E 5 | 20,725
NP
91 | far meass | | PERI | Wind Control | ΛID | | | . H | | ម្លី ២ អ
ព | \$1.55 | in the second second | 33 - 90 V 1 (5 1 7 1 1 | 5 | 분 8 | 20 EU
10 EU
20 EU | () indicates the mass number of the Goldpe-nuth the longest half-life. | | | ù. | γB | | | | | 50.94Z
V | | | (2)
EE | Sec. 10. | ដ ក | | C) in | | | | Trip! | h i | | | | 47.08
Ti | 91224
Zr | 111.00
111.00
111.00 | | 1101 | ម្ព | 212.G4
77t
90 | | | | - | | | | | | 35.
Se | 88.905 | | (237)
1.4e
10 | | ä | (a | | | | - Company of the Company | 13 | | 9.012
Be | 24.305
Mir | r
L | 49.93
19.93
19.93 | 87.£2 | 13. 23.
13. 23. | a de la constantina della cons | | ide Seri | do Serie | | | | | 1,4, | 1.00g
1.11 | 15.53
17.17 | 12.03.0
0.00.0
0.00.0 | | 39.098
IC | 15.468
Rb | ភ្ជួយ៖ | 日日日 | | Lantlivaide Seriek | **Acifnido Series | | | | L | PERIORS | | FN | | . Ava | | 40 | · a | 7 | | <u>,</u> | • | | | (TT8×8E8) | eswa.ac.sz | nu.lismwy | | |-----------|------------|-----------|--| | Table Tabl | Cuantry Speed of light; Elementary | Sýmbal
c (***** | Value 1.2.997 024 58 × 10 ⁴ m s ⁻¹ | General data and
Tundamental
—constants—— | | |--|------------------------------------|--|--|---|----| | Editoriain | Charge
Faraday | F⇒eN _A . | | W. W. | | | Section Sect | telumenn | . | 1_340 66 # 10_ # J.K=1 | | | | Figure F | | R = KN _A | 8,20578 £ 10-1
dm² sun K-1 mai-1 | | | | Aprille mass O 1.550 54 × 10 ⁻¹⁷ kg Another mass O 1.550 54 × 10 ⁻¹⁷ kg Another mass O 1.550 54 × 10 ⁻¹⁷ kg Another mass O 1.550 54 × 10 ⁻¹⁷ kg Another mass Protein M Another mass Another mass Protein Protein Protein Another mass Protein Protei | Flanck constant | | 6.526.08 × 10 ⁻¹⁴ .15 | | | | Meas of | constant | | in a filipante de la compania de la | | | | Electron | ្ឋាញ់ដៃ
 | U | 1,560 \$4 × 10 ⁻¹⁷ kg | | | | Vacuum μ 4 = × 10 - 7 - 2 m - 1 m Vacuum 5 = 1 / c μ 6.854 18 × 10 - 12 J - 1 C 1 m - 1 Permicrivity 5 = 1 / c μ 6.854 18 × 10 - 12 J - 1 C 1 m - 1 Sohr magnetion μ = ε ft/2 m 9.274 02 × 10 - 12 J - 1 C 1 m - 1 Nuclear | eletron | . m; | . 1:∈72.62 x 10™ kg | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Vacuum permicrivity 42c ₃ 1.112 63 × 10 ⁻¹² J - 1 C ² m - 1 Sohr magnaton permicrivity 42c ₄ 1.112 63 × 10 ⁻¹² J - 1 C ² m - 1 Sohr magnaton permicrivity 8.050 79 × 10 ⁻¹² J - 1 Substant Substant Fine structure constant Fine structure constant Gravitational constant Standard Substant Sendard Substant Sendard Simple fall Si | | <u>#</u> | 4= x 10" / J _E C-2 ₍₃₁ -1) | | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | 6.35418 × 10-14기-j C1까-1 | | | | Sohr radius | Nuclear
magneton | 水溢 计通信转换设备 化二氯甲基酚磺基酚磺基酚磺基酚 | ₽ <i>3</i> 7402×107*1771 | | 17 | | Rydberg R_=m_s^1/8A^3c 1.98737 x 10^4 cm ⁻¹ Fine Structure c= p_se^2c/2h 7.527 xs x 10 ⁻² Constant Gravitations G 6.57253 x 10 ⁻¹ N in kg - s Constant Standard G 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of free fall f 9 0.60665 m s - 1 actaleration of fall f 9 0.60665 m s - 1 a | value . | a file and the same of sam | | ų. | | | Constant Gravitational G | Rydberg | 化二甲基磺基酚 经经济收益 经债券 经基础 经未经帐间 医皮肤性病 | | • | | | Stendard g GAGGET m s - 1 Stendard g GAGGET m s - 1 Strong fall f Strong fall f Strong pico nano micro intili conti desi kilo mega giga | CE ÚZTÁNE | | | | | | f हो त म जा c d k M G Prefixes femo pice rians micre milli centi desi kilo mega giga | Senderd
Senderd
Sonsient | | | • | | | femico pica riana miare milli senti deci kilo mega gige | | | | . f Indet (gadrad) Galyes | | | | fenco pica rier | is miere milli | टलका व≅र्च शाव लास्त्रम होवर | Prefixes | | | APPENDIX C (continued) | 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | <u></u> | | |---|---|------------------|-----------------------| | Hall-reschio | on Harris III and Alberta | friti | aray ya aran ila | | HE ₂ CI ₂ (s) + 2e ⁻ | = 2Hg + 2Cf* | 0.2676 | a de Transporte de | | | = 8I + H ₂ O | 0.32 | Para de Maria de Cara | | , AgC(s) + a" | - MAETO | .0.7223 | | | SPO_+-5분, + 3년 | " = \$5+H;O' | 0.217 . | | | CMC[1] + 5 | . = Cu+3Ci" | 0.178 | | | SOI7 + 4H* + 2e - | = \$0,(44) + 2H10 | 0.17 | | | Sn** + 2e - | = \$n24 | 0.15 | | | 8+34*+2= | = # ₁ 5(g) | 0.14 | | | TiO''\+2H' + a" | = T(* 4 H ₂ O) | 0.10 | | | 5₄Oi + 2a" | = 25 ₂ O};** | 0.08 | | | AgBs(s) + 6" | = Ag + Br* ; | 0.071 | | | 2H* +:2e" | = H ₁ . | 0.0000 | | | - Pb*-+7e* | = Ph | -0.126 | | | * Sn ² * + 2e | ÷ γε+1.
≈ 20 | +0,136
-0.152 | 777 4, 774 | | Mo²¹ +Je⁻ | = Mo ap | 마르 +0.2 | | | ♪ N, +5Hˆ +4e⁻ | = H;NNH7 | -0.23 | | | V3+ 4/2e"
V1+ 4/2e" | = V1+ | -0246
-0256 | | | Co* + 2e- | r∈ Cö | +0277 | | | Ag(CN); 4 r" | = As +2CHT | =0.31 | | | Cd* + 2e" | =: Cd | 0.403 | | | C(³⁻ + e ² | e Gr ^r * | 구5시 | | | Fe ¹⁺ +2e ² | = Fe | 국 0.44 0 | | | 2CO, + 2H* + 2e* | $= H_1C_1D_4$ | -0,49 | •• | | H;2O; + 2H+ + 2e+ | = n _{r+} | -0.50 | | | U** + e+ | = hbH ² 0 ² +H ² 0 | -0.61 | | | Zn ³⁺ + Ze ⁻ | ≅ Zn | - ≥0.763 | | | Cr ²⁺ + Ze ⁻ | ≡ Cr | 0.91 | | | Ma ^{±1} + 2e [−] | +¦Mil | -1.118 | | | Zi ** + 4e* | 9 22 | - (21) | | | 竹計 + 3e* | 完 五 | - (21) | | | Al ¹ * + le ⁻ | = A) | 1.66 | | | Th ¹ * + le ⁻ | = Th | 1.90 | | | 14(g ^{**} * ₹ 24° | - Mg | <u>-23</u> 7 . | | | Lu³* + 5≥= | = (4 | -352 | | | Na* -k n* | = N4 | -3714 | | | Cu ¹⁺ + 2r | ≥ Ca | - <u>167</u> . | | | 5r ⁻¹ * + 2e ⁻ | ⊭ Sr | -189 | | | が、+e ⁻ | + K | <u>-1925</u> | | | は、+e ⁻ | = U | 1,D\$5 | | | the the service property of the service serv | Company Linguistics and Children | 3.70 mag 2 12 22 | na in consider | 14 /25 | |--|--|--|--|------------------------| | of a Color of Land Str. | The contract of o | e is to constitution to the constitution of th | · · · · · · · · · · · · · · · · · · · | e daka.
Pedaja | | LA sustanti hi nyin | TENTIALS OF SELECTED HALF R | end in order of decreas | fie dia | - 160 A | | oridation strongth a | nd useful for selecting reagon) syste | ma. Terreni el | | =13 - 1.
15 - 1. | | Hall-resction cont. | | F.(V) (2.1 | (1)
(a) (4) (1) (1) | (2) 新扩
(2) 20 2 | | | California PHF 19.79-5 | 3.06 () | (1991) - Carrier S | Lo zalie
Lubert | | _ O ₁ +26).÷26 | Oi+用。Oi+用。Oil | 267 | is.
Na san in sain s | ila enti | | | 117g = 250[7 | 20(1) | 4 | 1.0 | | 7H,O, +2H, +24 | Ag(| / 漏: / 二 | Alexander (1975) | end
Hali | | "Mannaultais" | | 1.70 | mark to the second | 1211001 | | '.ċε(V) +'ε⁻' | - Ce(III) (in 1A/ HClO)
- 107 + 3H2O | .) L61 ⊹; .∉
. 1.6 ; | Nic. | | | H ₄ 10 ₆ + Hキ 牛 2±゚
Bl ₂ 0 ₄ (blamathata) + | .4H++2e= == 2B D++2H1D | 1,59.17 | aire fiir | | | 5:07 £ 6H1 £'3e* | 1 = fini + MiO ; | ' '(<u>sy</u>) | 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | MaD7 4 8H* + Se* | | [발문] 전 1일 [대문] [발생님, 사람들은 사람들은 | | | | 「 | 三龙 | 136 | A Name of the Control | ell ; i
egre j | | | | 12)
121 | Salar Track Com | i Asaria. | | - MnO₁(ε) + 4H1 + 4ε
Ο₁(ε) + 4H1 + 4ε | e" - Ma³*+2H;O - •
= 2H;O | 1.279 | 34 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | | = 11° + 314°0 | 1.20 | | | | Dr.((/) + 24-7 | ₩ . 28Γ" | 1,055
1,05 | | | | 70+12H1 * 7 | = ∰ + 1G.
= V01- +H·0 | 1,00
2,00 | | | | HNO1+H-4-e- | = VO ¹⁺ ÷H ₂ O
= NO(g) ÷ H ₂ O
= NO(g) ÷ H ₂ O | 1.00 | | | | | = KNO; + H;0 | 0.94
0.92 | | 4 4 4 5 2 1 | | 2Hg ³ + 2c ⁻
Cu ¹ + I + c ⁻ | = Heir
- Chi(a) | 0.25 | | 19 19 1 9 1 9 1 | | As*+c= | : = 48 | 0.799 | | | | 升 <mark>品" ÷ 2-</mark> " | = 1/1g
= Fe ²⁴ | 0,79. <u> </u> | | | | Fe ² * + e*
O ₂ (g)+ 2H* + Ze [−] | માં તાલું તેને કે માને તેને કરી કે છે જે જે તેને જે જોને જાય અંજી તો કે કે તો તાલ જ માટે કે તેને જે તેને કે તાલ | 0,682 | | 1 | | 24gQ, + 24° | ⊣ HեiCi/s)+2O* | 0.63 | | | | H <u>H</u> SO ₄ (s) - 3e ⁻
Sb ₂ O ₄ + 6H ⁺ + 4s | - 2Hg + 5OI 2Hg + 5OI - | 0.615
0.581 | | | | # ₁ A ₂ O ₂ +2H ³ + | and the contract of contra | · 0.559 | 4.5 | | | 1 5 + 2 4= | ≨ 3 15. | 0.545 | | | | Cu* + ε⁻
γO²* + 2H* + ε⁻ | ÷ Ci
≥ V**+ H(O | 0,52
0,537 | | | | (CN)]*+≠ | = Fe(CN); | 0.34 | | | | Cu ¹¹ + J≠ | = Cu | 0.317
0.314 | | | | UOJ: + 4H: + 2 | e U ⁴⁵ + 2H₂O | (continued) | | | | | | :. | | | | | | | | | | | | | | |