UNIVERSITY OF ESWATINI

SUPPLEMENTARY EXAMINATION 2018/2019

TITLE OF PAPER:	ADVANCED PHYSICAL CHEMISTRY							
COURSE NUMBER:	C402							
TIME:	THREE (3) HOURS							
INSTRUCTIONS:								
There are six (6) ques	tions. Each question carries 25 marks. Answer any four (4) questions.							
NB : Each question sho	ould start on a new page.							
A data sheet and a periodic table are attached								
A non-programmable	electronic calculator may be used							

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF

INVIGILATOR.

Question 1 [25 Marks]

a) The Maxwell Boltzmann distribution function of velocities in three dimensions between $v \rightarrow v + dv$ is

$$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 exp\left(\frac{-mv^2}{2kT}\right)$$

- i. Derive an equation for the average velocity, $ar{v}$
- ii. Find an expression for the most probable velocity [5]
- i. Calculate the number of collisions made by a single nitrogen gas molecule per sec given that the collision diameter is 373nm.
 [3]
 - ii. What is the total number of collisions made by N₂ if the oven volume is 50 cm³ and the vapor pressure N₂ at 300 °C is 50 torr [2] Useful equations

$$Z_A = \frac{\sqrt{2}\sigma\bar{v}p}{kT}; \quad Z_{AA} = \frac{1}{2}Z_A\frac{N}{V}; \quad \bar{v} = \left(\frac{8RT}{\mu M}\right)^{\frac{1}{2}}; \quad \lambda = \frac{kT}{\sigma p\sqrt{2}}$$

- iii. Calculate the mean free path of nitrogen gas using the parameters above [5]
- iv. Calculate the time intervals between collisions [3]
- v. Does the nitrogen gas obey the kinetic theory of gasses? Verify and give reasons for your answer. [2]

Question 2 [25 Marks]

- a) In an experiment to measure quantum efficiency of a photochemical reaction, the absorbing substance was exposed to 490 nm light from a 100W source for 45 minutes. The intensity of the transmitted light was 40% of the incident light. As a result of irradiation, 0.344 mol of the absorbing substance decomposed. Calculate the quantum efficiency.
- b) The rate constant for the bimolecular elementary gaseous reaction $CO + O_2 \rightarrow CO_2 + O$ is 1.22 x 10^5 M/s at 2500K and 3.66 x 10^5 M/s at 2800K.
 - i. Calculate the activation energy and pre exponential factor. [7]
 ii. Assuming a hard sphere with a diameter of 350pm for O₂ and of 360 pm
- for CO, calculate the steric factor in the collision theory. [6]
 c) A proposed free radical chain mechanism for the decomposition of acetaldehyde

$$CH_3CHO \rightarrow CH_3^{\circ} + CHO^{\circ}$$
 k1

consists of the following steps:

[5]

$$CH_3CHO + CH_3^{\circ} \rightarrow CH_3^{\circ} + CO + CH_4$$
 $k2$
 $2CH_3^{\circ} \rightarrow C_2H_6$ $k3$

Show that the rate of formation of methane is

$$\frac{d[CH_4]}{dt} = k_2 \left(\frac{k_1}{2k_3}\right)^{1/2} \left[CH_3CHO\right]^{3/2}$$
 [6]

Question 3 [25 Marks]

a) The mechanism for enzyme catalyzed reactions as proposed by V. Henri (1903) is

$$E + S \stackrel{k_1, k_{-1}}{\longleftrightarrow} [ES] \stackrel{k_2}{\to} P$$

 Using the steady state approximation and the Lineweaver-Burk treatment show that Michaelis-Menten equation is

$$\frac{1}{V_0} = \frac{K_m}{V_{max}} \frac{1}{S} + \frac{1}{V_{max}}$$

ii. Briefly explain and define the role of the following in enzyme kinetics:

•	V _{max}	[3]
	Michaelis constant, K _m	[3]
C.	k_2	[3]

b) The following data refer to an enzyme catalyzed reaction:

Vo/10 ⁻³ M/s	13	20	29	38
[S]/10 ⁻³ M	2.0	4.0	8.0	20

Given that the enzyme concentration is 2.0 g/dm³ and the molar weight is 50 000g/mol, using an appropriate plot, calculate

1.	NIII	L-3
ii.	Vmax	[2]
iii.	The number of substrate molecules converted into products p	er unit time
	the state of the state of width and advantage	TO1

when the enzyme is fully saturated with substrate. [3]

Question 4 [25 Marks]

The Kohlrausch equation for strong electrolytes is

$$\Lambda_m(c) = \Lambda_m^o - K\sqrt{c}$$

And the Ostwald dilution law for weak electrolytes states;

$$K_{eq} = \left(\frac{\left(\Lambda'_m / \Lambda_m^0 \right)}{\left(\Lambda'_m / \Lambda_m^0 \right)} \right) c$$

- a) Using diagrams where necessary, explain in terms of the relaxation effect and the electrophoretic effect, the concentration dependence of molar conductivities shown by both strong and weak electrolytes. [4]
- b) Derive the Ostwald dilution law and express it in its linearized form [3]
- c) The following conductivity data are for a weak acid, MH₃CO₂H in aqueous solution at 25 °C.

c/10 ⁻³ M	6.25	3.13	1.56	0.781	0.391	0.195	0.0977
Λ _m /Scm²/mol	53.1	72.4	96.8	127.7	164.0	205.8	249.2

And the viscosity of water is given by η = 1.00 x 10⁻³ kg/(ms) Determine

i.	The limiting conductivity	[2]
ii.	pKa value	[2]
iii.	the transport number of the MH ₃ COO and the H+ ions given that the	ne
	limiting conductivity of MH ₃ COO ⁻ to be 40.9 Scm ² /mol	[2]
iv.	mobility of MH₃COO⁻ in units of m²/(Vs)	[2]
٧.	diffusion coefficient of MH₃COO⁻ in units of m²/s	[2]
vi.	hydrodynamic radius of MH₃COO⁻	[2]

Useful information

$$K = \left(\frac{1}{R}\right)\frac{1}{A}; \ t_{\pm} = \frac{\lambda_{\pm}}{\lambda_{-} + \lambda_{\pm}} = \frac{\lambda_{\pm}}{\Lambda_{m}^{0}} = \frac{u_{\pm}}{u_{-} + u_{+}}; \ \Lambda_{m}^{0} = v_{+}\lambda_{+} + v_{-}\lambda_{-}; \ \lambda_{\pm} = zu_{\pm}F; \ t_{+} + t_{-} = 1$$

$$D = \frac{kT}{6\pi\eta a} \ and \ D = \frac{ukT}{ze} = \frac{uRT}{zF}$$

d) Describe any one method of determining transport numbers. [3]

e) In a moving boundary experiment on KCI, the aqueous consisted of a tube of internal diameter 4.146 mm, and it contained aqueous KCI at concentration of 0.021 M. A steady current of 18.2 mA was passed, and the boundary advanced as follows:

Δt/s	200
x/mm	64

Find the transport number of K⁺, its mobility and its ionic conductivity given the limiting conductivity to be 149.9 Scm²/mol [3]

Useful information

$$t = \frac{zcVF}{I\Delta t}$$

Question 5 [25 Marks]

a) Distinguish between physisorption and chemisorption

[5]

b) The Langmuir adsorption isotherm for non-dissociative adsorption of a single species is given by;

$$\theta = \frac{kP}{1 + kP}$$

Outline the kinetic argument used to derive the adsorption isotherm for two molecules A and B as given by [5]

$$\theta_A = \frac{K_A P_A}{1 + K_A P_A + K_B P_B}, \qquad \theta_B = \frac{K_B P_B}{1 + K_A P_A + K_B P_B}$$

c) An adsorption isotherm for nitrogen adsorbed on a sample of colloidal silica was measured at -19°C and the following data was obtained:

V/ x 10 ⁶ /m ³	P/P _o
44	0.008
61	0.067
68	0.125
80	0.250
90	0.333

Where V is the volume adsorbed (corrected to STP) and P_o is the measured saturated vapour pressure of nitrogen at the given temperature.

i. Verify whether or not these results conform to the BET adsorption isotherm.[5]

5

ii. Determine the monolayer volume capacity and the surface area of the sample given that one adsorbed nitrogen molecule occupies 0.162 nm² in a monolayer. [10]

Useful equation

BET isotherm is given by:
$$\frac{P}{V(P_0-P)} = \frac{1}{cV_m} + \frac{C-1}{cV_m} \frac{P}{P_0}$$

where P_o is the bulk vapour pressure is the equilibrium vapour pressure, V_m is the monolayer volume capacity and V the total volume of material adsorbed

Question 6 [25 Marks]

- a) Explain why the polarizability of a molecule decreases at high frequencies [5]
- b) The polarizability volume of NH₃ is 2.22 x 10⁻²⁴ cm³. Calculate the dipole moment of the molecule (in addition to the permanent dipole moment) induced by an applied electric field of strength 15.0 kV/m. [5]
- c) The molar polarization, $P_{\rm m}$, is defined as $P_{\rm m}=\frac{N_{\rm A}}{3\varepsilon_0}\left(\alpha+\frac{\mu^2}{3kT}\right)$. The molar

polarization of gaseous water at 100 kPa, is given in the table below.

T/K	384.3	420.1	444.7	484.1	522.0
P _m /(cm ³ /mol)	57.4	53.5	50.1	46.8	43.1

Calculate:

i. The polarizability volume of water.

[15]

Total /1	00/

General data and fundamental constants

Quantity	Symbol	Value
Speed of light Elementary charge Faraday constant Boltzmann constant Gas constant	c $F = N_A e$ k $R = N_A k$	2.997 924 58 X 10 ⁸ m s ⁻¹ 1.602 177 X 10 ⁻¹⁹ C 9.6485 X 10 ⁴ C mol ⁻¹ 1.380 66 X 10 ⁻²³ J K ⁻¹ 8.314 51 J K ⁻¹ mol ⁻¹ 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ 6.626 08 X 10 ⁻³⁴ J s
Avogadro constant Atomic mass unit Mass	$ h = h/2\pi $ $ N_A $ $ u $	1.054 57 X 10 ⁻³⁴ J s 6.022 14 X 10 ²³ mol ⁻¹ 1.660 54 X 10 ⁻²⁷ Kg
electron proton neutron Vacuum permittivity Vacuum permeability	m_e m_p m_n $\epsilon_o = 1/c^2 \mu_o$ $4\pi\epsilon_o$	9.109 39 X 10 ⁻³¹ Kg 1.672 62 X 10 ⁻²⁷ Kg 1.674 93 X 10 ⁻²⁷ Kg 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ 1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ 4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹
Magneton		$4\pi \times 10^{-7} \mathrm{T^2}\mathrm{J^{-1}}\mathrm{m^3}$
Rydberg constant Standard acceleration	$ \mu_{N} = e\hbar/2m_{p} $ $ g_{e} $ $ a_{o} = 4\pi \epsilon_{o}\hbar/m_{e}e^{2} $ $ \alpha = \mu_{o}e^{2}c/2h $	9.274 02 X 10 ⁻²⁴ J T ⁻¹ 5.050 79 X 10 ⁻²⁷ J T ⁻¹ 2.002 32 5.291 77 X 10 ⁻¹¹ m 7.297 35 X 10 ⁻³ 1.097 37 X 10 ⁷ m ⁻¹
of free fall Gravitational constant	<i>7</i> 3	9.806 65 m s ⁻² 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 1.602	joules (2 X 10	,, 1 D	1 erg 1 eV/r		e	<u> </u>	1 X 10 96 48.	o ⁻⁷ J 5 kJ mo	l ⁻¹
Prefixes	,	Р	n.	μ	m.	С	d	k ·	M	· . G
		pico . 10 ⁻¹²	nano 10-9			centi 10 ⁻²	deci 10 ⁻¹	kilo 10³	mega 10°	giga 10°

PERIODIC TABLE OF ELEMENTS

* *	*Ln		7	6		cv				ω		, ,,				1 5161000	PER IODA	
**Aclinide Series	*Lanthanide Scries			223 223		R.b.	85.468		860.6E	⊃ Na	22.990	<u>س ۲</u>	6.941		I	Nug.	2	
Series	Series		Да 88	Ba 56	137.33	125	87.62	C _n	40 078	Mg 12	24.305	ੂ ਹਰ	9.012					- 3
		1	***Ac	*Ln 57	138.91	3 4	88.906	21 22 21	17 0 6%							. 11115	باز	
232.04	140.12 Ce 58		74 F.	72 72	178.49	27	9 224	3 11 8	98 CF							178	4	
231 04	140.91 Pr 59 ···		Ha.	T.a. 73	180.95	Nb.	906 26	7.5.05	2007							·VB	L.	
77 8 LC	144.24 Nd 60	,	Unh 106	12C2).	183.85	X ₀	70 50 57		6-00	TRAN						VIB	6	
20 666	(145) Pm 61		(202) Uns 107 .	Re. 75	186.21	76.707	09 907	Mn .		RANSITION ELEMENTS						AliB	7	
(1/1/1)	150.36 Sm 62		0#O	05	190 2	Ru	- -			N ELEN		•					∞	
3	151,96 . Du 63		(266) Une	I.r. 7/7	45	Rh	. 27	58,933 Co		MENTS	• . • .			15.		VIIIB	9	GROUPS
	157.25 Gd 64		(267) Uun	78 78	46	106.42 Pd	28	Ni Ni			٠			• •	•		10	Ω
	158.93 Tb			Au 79	47	107.87 Ag	29	63.546 Cu		-	Alon	יינע מענט	> ?		•	ΙΒ		
	162,50 Dy 66	٠.		Hg ,	48	112:41 Cd	30	65,39.		•	nic No. T	Symbol —			· .	BJI	12	
,	164.93 Ho	•		T1 81	49	. 114.82 · Ini	31	69.723 . Ga	IJ	26:982 Al	2	# NO. 1	11001			IIIA	13	
C	167.26 Er			207.2 Pb 82	50	118.71 Sn	32	72.61 Ge	4	28.086 Si	. 6	Ċ 17011	5		٠.	IVA	14	
-	168.93 Tm	,		208.98 Bi . 83	51	121.75 Sb	ы Ц	74.922 Ås	I.S	30.974 P	. 7	N 14.007		,		VA	15	
ò	173.04 Yb	٠		(2á9) Po . 84	52	127.60 To	<u>ا</u> ل	78.96 Sc	. 16			0	┨		,	УIУ	16	
-	174.97 Lu			(210) At	53 >	126.90	당,	124	17	35,453 CI	9		-			VIIA	17	
,			60	(222) Rn	54	131,29	36	83.80		39.948 År	10		+-	IIc	4.003	VIIIA	۸۱ ا	
			•	-			·						<u>.</u>					

**Actinide Series

232.04 Th 90

(244) Pu 94

(243) Am 95

(247) Cm 96

(247) Bk 97

(251) Cf : 98

(252) 克(252)

(257) Fm 100

(258) Md⁻ 101

(259) No 102

(260) Lr Joj

() indicates the mass number of the isotope with the longest half-life.