UNIVERSITY OF ESWATINI

RE-SIT EXAMINATION 2018/2019

TITLE OF PAPER:

ORGANOMETALLIC CHEMISTRY

COURSE NUMBER:

CHE422

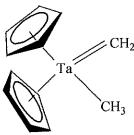
TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

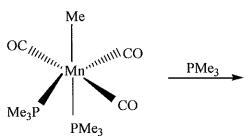
ANSWER QUESTION ONE (TOTAL 40 MARKS) AND ANY TWO OTHER

QUESTIONS (EACH QUESTION IS 30


MARKS)

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.


QUESTION ONE (COMPULSORY) [40 Marks]

- Give the electron count for each metal centre of the following species: (a) (i)
 - $[Mn(SnPh_3)_2(CO)_4]^-$ (1)
 - (2)[Re(CO)₆]
 - (3)

- Assign the oxidation state of each metal, M. Assuming the 18-electron (ii) rule applies, identify the first row transition metal.
 - $M(CO)(CS)(PPh_3)_2Br$ (1)
 - (2)
 - $[M(CO)_7]^+$ $[(\eta^3-C_3H_5)M(CN)_4]^{2-}$ (3)

- [6]
- Predict the product of the addition of PMe₃ to the complex shown below, (b) (i) showing the structure. Note that the product includes all the atoms of the original complex and of the PMe₃. Describe in as much detail as you can its v(CO) IR spectrum. [6]

- Rationalise the observation that a single v(CO) band is observed for the (ii) ion $[Co(CO)_3(PPh_3)_2]^+$ [4]
- What charge, z, would be necessary for the following to obey the (i) (c) 18-electron rule?
 - (1) $[Ru(CO)_4(SiMe_3)]^z$
 - $[(\eta^6 C_6 H_6)_2 Ru]^z$ (2)
 - $[W(CO)_5(SnPh_3)]^z$

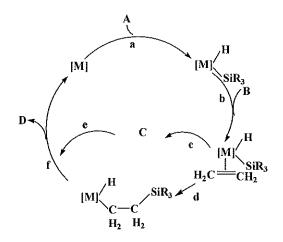
[3]

- A complex has the empirical formula Re(CO)₃Cl. How could it attain the (ii) 18-electron configuration without requiring any different additional ligands?
- (iii) Draw the structure of the three complexes (cyclo- C_5H_5)Co(CO)_n (n = 2, 3) and 4) assuming that the complexes obey the 18-electron rule.

- The reaction of $[(\eta^6-C_6H_6)RuCl]_2$ (A) with C_6H_6 in the presence of $AgBF_4$ gives $[(\eta^6-C_6H_6)_2Ru][BF_4]$ containing cation B. Treatment of this compound with Na in liquid NH₃ yields a neutral Ru(0) complex, C. (d) (i) Suggest structures for A, B and C.
 - For each of the following metal and ligand combinations, formulate the (ii) simplest neutral compound that conforms to the 18-electron rule and draw a reasonable structure for each compound.
 - (1)
 - Ir, $\eta^5 C_5 H_5$, CO Pt, $\eta^5 C_5 H_5$, NO (2)

[4]

QUESTION TWO [30 Marks]


- (a) (i) Rationalise the observation that on forming IrBr(CO) $\{\eta^2-C_2(CN)_4\}$ (PPh₃)₂, the unique C-C bond in C₂(CN)₄ lengthens from 135 to 151 pm. [4]
 - (ii) Explain the difference between *homogeneous* and *heterogeneous* catalysts and detail the advantages and disadvantages of both. [8]
- (b) Draw a catalytic cycle for phosphine-cobalt catalysed hydroformylation. The catalyst precursor is H(CO)Co(PPh₃)₃. [10]
- (c) (i) For the pair of complexes given below, predict which one will be more reactive towards *oxidative addition* of H₂. Justify your choice. [4] IrCl(CO)(PPh₃)₂ or [PtCl(CO)(PPh₃)₂]⁺
 - (ii) In the substitution of V(CO)₆, the rate of reaction changes with respect to phosphine nucleophile according to the order
 PMe₃ > PBu₃ > P(OMe)₃ > PPh₃
 What does this suggest about the mechanism? [4]

QUESTION THREE [30 Marks]

- (a) Provide a mechanism for the reaction: $L_nZr-H + 2$ -butene $\rightarrow L_nZr-CH_2CH_2CH_3$ [10]
- (b) (i) A metal **A** reacts with dimethylmercury, $(CH_3)_2Hg$, to give metallic mercury and mercury free compound **B**, **B** contains 50.0% carbon and has the empirical formula $C_3H_9\mathbf{A}$. The mass spectrum of **B** gives a molecular ion peak at m/z = 144, and the ¹H NMR spectrum at 20 °C consists of a sharp singlet at $\delta = -0.31$ which at -65 °C becomes two sharp singlets at $\delta = +0.07$ and $\delta = -0.50$, with relative intensities 1:2. **B** reacts with methylamine, NH_2CH_3 , to produce the complex **C** which has the molecular formula $C_4H_{14}N\mathbf{A}$. Identify **A**, **B**, and **C**. [6]
- (ii) Draw <u>four</u> bonding modes for the *cyclooctatetraene*. [4]
- (c) (i) Predict the hapticity (i.e. what is n in η^n) of each Cp ring in Cp₂W(CO)₂. [2]
 - (ii) How is an *alkylidenetriphenylphosphorane* (Wittig reagent) synthesised? [2]
 - (iii) Give chemical equations to show what alkylidenetriphenylphosphorane is used for. [2]
 - (iv) Comment on the observation that the $\nu(CO)$ peak in $[Fe(CO)_6]^{2+}$ appears at 2203 cm⁻¹compared with free CO which occurs at 2143 cm⁻¹. [4]

QUESTION FOUR [30 Marks]

- (a) Using silicon (Si) and chloromethane (CH₃Cl) as primary starting materials, state reactions and give equations for the synthesis of hexamethyldisiloxane. [6]
 - (ii) Explain with necessary diagrams the bonding of ethylene, C_2H_4 to transition metal atoms with emphasis on the $\underline{\sigma}$ -donation and $\underline{\pi}^*$ -acceptance functions of the ligand.
- (b) Examine the scheme below. Draw structures for A, B, C and D. Describe steps a, b, c, d, e and f. Given that [M] is IrL_2X (L = phosphine i.e. PR_3 , X = halide), give oxidation states and electron counts for all metal complexes. [10]

- (c) Suggest a sequence of reactions (give equations and reaction types) for the preparation of the following compounds:
 - (i) $Mo(\eta^6-C_6H_6)(CO)_3$ given $MoCl_3$, Al, CO and C_6H_6 [4]
 - (ii) H₃C-Re(CO)₅ using Re₂O₇, CO, CH₃I and Na as the primary starting materials [4]

PERIODIC TABLE OF ELEMENTS

GROUPS

		7			6			Un			4			ω			2						
٠	87	Kr	223	55	S	132.91	37	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	85,468	61	*	39.098	11	1 2	22.990		<u> </u>	145.0	1 10 2	-	1.008	1 IA	
	88	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	7.7	Mg Mg	24.305	4	, p	710.2	0 013		-	IIA	2
1	89	**Ac	(227)	57	*L2	138.91	39	×	88.906	21	×.	44.956							1			ШВ	3
	104	잗	(261)	72	Hf	178.49	40	Zr	91.224	2:2	Ti	47.88										IVB	4
	105	Ha	(262)	3	Ta	180.95	41	Nb	92.906	23	V	50.942					;					VB	5
	106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Ç	51.996		TRAN								VIB	6
	107	Uns	(262)	33	Re	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS								VIIB	7
	108	Uno	(265)	76	ဝွ	190.2	44	Ru	101.07	26	Fе	55.847		ELEM									00
	109	Une	(266)	77	T,	192.22	45	Rh	102.91	27	င္ပ	58.933		ENIS								VIIIB	9
	011	Um.	(267)	78	7	195.08	2	Pd	106.42	28	Z.	58.69											10
			13	79	Au	196.97	47	A	107.87	29	Cu	63.546				Atomic No.	Symbol -	Atomic mass -				Œ	1.1
->				æ,	Щg	200.59	48	S.	112.41	30	Zn	65.39								-		IIIB	12
			,	<u>×</u>	;	204.38	49	Ħ	114.82	31	ଫୁ	69.723	13	A	26.982	J.	8	10.811				ША	13
				% ;	P	207.2	50	S	118.71	32	ପୁ	72.61	14	S	28.086		C	12,011	E			IVA	14
			5	<u>بر</u>	펈	208.98	51	Sb	121.75	ယ္ယ	As	74.922	15	٦	30.974	7	Z	14.007				VA	15
			3	× ,	ਰ •	(209)	52	Te	127.60	ω 4	Se	78.96	16	ζΩ	32.06		0	15.999				VIA	16
				8,	Δ ,	(210)	ر انگا	ĭ	126.90	ယ	д	79,904	17	Ω	35.453	9	Ħ	18.998				AIIA	17
			9	82	ਲ ਤ	(222)	54	×	131.29	ω :	Ϋ́,	83.80	18	Ar	39.948	10	'Z'e	20.180	2	He	4,003	VIIIA	18

*Lanthanide Series

140.12 Ce 58

140.91

144.24 Nd \ 60

(145) **Pm** 61

150.36 **Sm** 62

151.96 Eu 63

157.25 **Gd** 64

158.93 **Tb** 65

164.93 **Ho** 67

167.26 Er 68

168.93 **Tm** 69

173.04 **Yb** 70

174.97

Lu 71

**Actinide Series

232.04

231.04

237.05

238.03 U 92

93.**N**

(244) **Pu** 94

(243) **Am** 95

(247) **Cm** 96

(247) **Bk** 97

% Ct (521)

(252) Es 99

(257) **Fm** 100

(258) **Md** 101

(259) **No** 102

(260) **Lr** 103

Th

() indicates the mass number of the isotope with the longest half-life.