UNIVERSITY OF ESWATINI

MAIN EXAMINATION 2018/2019

TITLE OF PAPER:

ORGANOMETALLIC CHEMISTRY

COURSE NUMBER:

CHE422

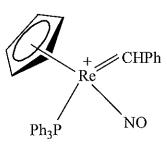
TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

ANSWER QUESTION ONE (TOTAL 40

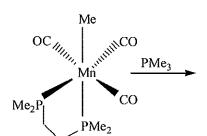
MARKS) AND <u>ANY TWO OTHER</u> <u>QUESTIONS</u> (EACH QUESTION IS 30


MARKS)

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

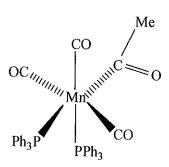
PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE (COMPULSORY) [40 Marks]


- Give the <u>electron count</u> for each metal centre of the following species: (a) (i)
 - $Ir(CO)(NO)(PPh_3)_2$ (1)
 - $[PtCl_3(\eta^2-H_2C=CH_2)]$ (2)
 - (3)

- (ii) Assign the oxidation state of each metal, M. Assuming the 18-electron rule applies, identify the second row transition metal.
 - $[(\eta^5-C_5H_5)(\eta^4-C_5H_6)M]^+$ (1)
 - $[M(CO)_3(PMe_3)]$ (2)
 - $(\eta^5 C_5 H_5)(\eta^1 C_3 H_5)(\eta^3 C_3 H_5)_2 M$

[6]

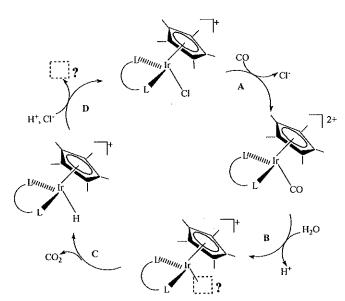

- (3) $(\eta^5-C_5H_5)(\eta^1-C_3H_5)(\eta^3-C_3H_5)_2M$ (16-electron complex) [6] What charge, z, would be necessary for $[(\eta^3-C_3H_5)V(CNMe)_5]^z$ to obey (iii) the 18-electron rule?
- (b) (i) Predict the product of the following reaction and show the structure. Note that the product includes all the atoms of the original complex and of the PMe₃. Describe in as much detail as you can its ν (CO) IR spectrum.

Rationalise the observation that on going from Fe(CO)₅ to (ii) Fe(CO)₅(PPh₃)₂, absorptions in the IR spectrum at 2025 and 2000 cm⁻¹ are replaced by bands at 1944, 1886 and 1881 cm⁻¹. [4]

- (c) (i) Sketch the products of the reaction when the following complex loses
 - (1) one PPh₃
 - (2) one CO

[4]

- (ii) Draw the structures of the <u>three</u> complexes $(cyclo-C_7H_7)Co(CO)_n$ (n = 1, 2 and 3) assuming that the complexes obey the 18-electron rule. [6]
- (d) Propose the main steps in the catalytic cycle for the conversion of pent-1-ene to hexanal using HCo(CO)₄ as the catalyst precursor. [7]
 - (ii) Predict giving reason(s) the influence of an increase in the CO partial pressure above a certain threshold on the rate of the reaction (d)(i) above.


[3]

QUESTION TWO [30 Marks]

(a) (i) Alkynes readily bridge M–M bonds, in which case they act as 2-electron donors to each metal. Sketch the product of the reaction below, indicating the hybridization of the C atoms. [4] $PhCCPh + Co_2(CO)_8 \rightarrow (\mu_2-PhCCPh)Co_2(CO)_6 + 2CO$

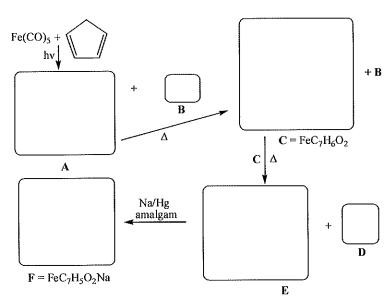
(ii) The M-P distance in (η⁵-C₅H₅)Co(PEt₃)₂ is 221.8 pm and the P-C distance is 184.6 pm. The corresponding distances in [(η⁵-C₅H₅)Co(PEt₃)₂]⁺ are 223 pm and 182.9 pm. Account for the changes in these distances as the former complex is oxidised. [4]

(b) (i) Inspect the catalytic cycle below. Give the species in the two boxes (marked with "?") and describe each of the steps **A-D** in as much detail as possible. [8]

- (ii) Which of the following constitute genuine examples of catalysis and which do not? Justify your answers.
 - (1) The addition of H₂ to C₂H₄ when the mixture is brought into contact with finely divided platinum.
 - (2) The reaction of a H₂/O₂ gas mixture when an electrical arc is struck.
 - (3) The combination of N₂ gas with lithium metal to produce Li₃N, which then reacts with H₂O to produce NH₃ and LiOH. [6]
- (c) (i) Suggest products in the following reactions:

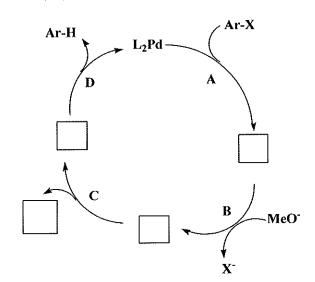
(1) $[(C_6H_5)_3PCH_3]^{\dagger}Br^{\dagger} \text{ with } C_4H_9Li \text{ (}^nBuLi\text{)}$

(2) $(\eta^5 - C_5H_5)_2$ Fe with C_4H_9Li (nBuLi) [4]

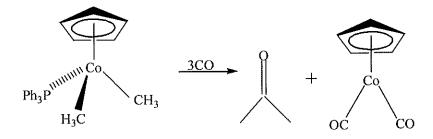

(ii) For the pair of complexes given below, predict which one will be more reactive towards oxidative addition of H₂. Justify your choice. [4] RhCl(PPh₃)₃ or RhCl(CO)(PPh₃)₂

QUESTION THREE [30 Marks]

- (a) (i) Mo(CO)₆ undergoes substitution reactions with phosphine ligands, but the reaction never proceeds further than the Mo(CO)₃(PR₃)₃ stage. If the phosphines are very bulky, the phosphines are arranged *mer*, but otherwise are always *fac*. Explain these two observations. [4]
 - (ii) The product of reaction between PtCl₂ and CO at high pressure and 200 °C has a molecular weight of 322. Find the formula and suggest possible isomers. [6]
- (b) (i) NO⁺ is isoelectronic with CO and often replaces CO in substitution reactions, so it might seem the reaction below is favourable. Comment on whether the process is likely. [4]


 $Mo(CO)_6 + NOBF_4 \rightarrow [Mo(NO)_6][BF_4]_6 + 6CO$

- (ii) Write balanced equations for the following reaction types:
 - (1) $(CH_3CH_2)_3Ga + CH_3OH \rightarrow$
 - (2) $Al_2(CH_3)_6 + N(C_2H_5)_3 \rightarrow$ [4]
- Irradiating Fe(CO)₅ with UV light in the presence of cyclopentadiene results in the formation of **A** and colourless gas **B**. **A** has <u>four</u> different ¹H NMR environments in a 2:2:1:1 ratio. Heating **A** further results in the release of more **B** to make **C**, having the formula FeC₇H₆O₂. Molecule **C** reacts rapidly with itself at room temperature to eliminate colourless gas **D**, forming solid **E**. Compound **E** has two strong IR bands, one near 1850 cm⁻¹, the other near 2000 cm⁻¹. Treatment of **E** with Na metal generates solid **F** of empirical formula FeC₇H₅O₂Na. Draw structures of **A** to **F** indicated by the boxes in scheme below. [12]


QUESTION FOUR [30 Marks]

- (a) (i) Explain the following: The *cis* isomer of (PPh₃)₂Pd(CH₂CH₃)₂ decomposes immediately to give butane, but the *trans* isomer produces a 1:1 mixture of ethene and ethane. [4]
 - (ii) Ru(CO)₃L₂, where L = PPh₃ reacts with CH₃I as shown: Ru(CO)₃L₂ + CH₃I \rightarrow cis-Ru(CO)₂(L₂)(CH₃)(I) + CO The product features CH₃I oxidatively added cis (C and I have very similar electronegativities). The reaction mechanism involves two steps.
 - (1) After counting the electrons in Ru(CO)₃L₂, what is the <u>first step</u> in the mechanism?
 - (2) What is the second step?
 - (3) Sketch the <u>transition state</u> in the <u>second step</u>. [6]
- (b) Examine the scheme below (L = phosphine i.e. PR₃). Give appropriate <u>structures</u> and give <u>electron counts</u> and <u>oxidation states</u> for all palladium complexes. Name reactions A, B, C and D. [10]

(c) Suggest a plausible mechanism for the following reaction:

[10]

PERIODIC TABLE OF ELEMENTS

6		U1 &	4	3	2	<u> </u>	PERIODS	•
				22.990 Na 11	6.941 Li 3	1.008 H 1	IA I	
			40.078 Ca 20	24.305 Mg 12	9.012 Be 4		2 IIA	
(227) ** Ac 89	138.91 * La 57	88.906 Y 39	44.956 Sc 21				3 IIIB	
(261) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22				4 IVB	
105 EH (262)	180.95 Ta 73	92.906 Nb 41	50.942 V 23		į		5 VB	
(263) Unh 106	183.85 W 74	95.94 Mo 42	51.996 Cr 24	TRAN		,	6 8	
(262) Uns 107	186.21 Re 75	98.907 Tc 43	54.938 Min 25	IRANSITION ELEMENTS		•	VIIB	
(265) Uno 108	190.2 Os 76	101.07 Ru 44	55.847 Fe 26	A ELEN			∞	2
(266) Une 109	192.22 Lr 77	102.91 Rh 45	58.933 Co 27	ENTS			AITIB 6.	CROTTES
(267) Uun 110	195.08 Pt 78	106.42 Pd 46	58.69 Ni 28		·		10	. .
	196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atom Syn Atom		B II	
	200.59 Hg 80	112.41 Cd 48	65.39 Zn 30	, , ,	Atomic mass Symbol Atomic No.		12 IIB	
	204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	¥10.811		13	
	207.2 Pb 82	118.71 Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C 6		I4 IVA	
	208.98 Bi 83	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 N 7	-	15 VA	
		127.60 Te 52	i	32.06 S 16.	15.999 O 8		16 VIA	
	(210) At 85	126.90 I 53	79.904 Br 35	35.453 CI 17	18.998 F 9		VIIA	
		131.29 Xe , 54		39.948 Ar 18	20.180 Ne 10	4.003 He 2	18 VIIIA	

*Lanthanide Series

59 7

Nd \ 60

(145) **Pm** 61

150.36 Sm 62

151.96 Eu 63

157.25 Gd 64

158.93 **Tb** 65

Dy

Ho 67

167.26 Er 68

168.93 **Tm** 69

173.04 **Yb** 70

174.97

162.50

164.93

**Actinide Series

232.04

231.04

238.03

237.05

8 **a**

Np 93

(244) **Pu** 94

(243) **Am** 95

(247) Cm 96

(247) **Bk** 97

% C (251)

(252) Es 99

(257) **Frn** 100

(258) **Md** 101

(259) **No** 102

(260) 103

() indicates the mass number of the isotope with the longest half-life.