University of Eswatini

Faculty of Science and Engineering

Department of Chemistry

Re-sit Examination 2018/2019

Title of Paper

Applied thermodynamics

Course code

CHE 242

Time

3 hours

Instructions

Each question is worth 25%

Answer question 1 and any other 3 questions

Data sheets are provided with this examination

Do not open this paper until permission has been given by the invigilator

Question 1 – Compulsory [25 Marks]

a)	Write short notes on the following	
	i. Partial molar volume	[2]
	ii. Raoult's Law	[3]
b)	What is the approximate osmotic pressure of a 0.118 molal and 1.00 g/n of LiCl at 10.0 °C? The freezing point of this solution is -0.415 °C.	nL solution [8]
c)	Solid $CaCO_3$ degenerates into CaO and CO_2 at certain conditions, determined will proceed under standard conditions given that ΔG° of $Cacolor Cacolor Caco$	
d)	The analysis of gases is done under real or perfect conditions. expressions $\Delta_r \mbox{G}$ for real gases	Derive an [6]
Quest	ion 2 [25 Marks]	
a)	Write short notes on the following;	
	i. Triple point	[2]
	ii. van't Hoff factor	[2]
	iii. Standard chemical potential	[4]
b)	Show your understanding of colligative properties by using 2 real life	examples to
·	show the use of any two scenarios of your choice.	[6]
c)	The vapour pressure of pure acetone is 4.00×10^3 mmHg. A solution by dissolving 1.00g of a non-volatile compound sulfanilamide (C_6H_1)	
	i. Find the vapour pressure of acetone in the solution	[7]
	ii. Given that the solution is prepared in a 200ml container,	what is the
	osmotic pressure of the solution at 0°C.	[4]

Question 3 [25 Marks]

a)	Write short notes on the following;	
	i. Henry's law	[3]
	ii. Osmotic pressure	[3]
	iii. Vapour pressure lowering	[3]
b)	Calculate the partial molar volume of pure liquid water when the density by 0,997 g/cm ³ at 25°C. By how much would the molar volume chang sample is increased by 2g.	
c)	What mass of urea CON ₂ H ₄ , must be added to 450g H ₂ O to get a solution vapour pressure of 298 mmHg given that the vapour pressure of pure H ₂ O mmHg at this temperature.	
d)	Derive the vapor pressure of a pressurized liquid, with an aid of diagram necessary.	ns where
Quest	ion 4 [25 Marks]	
a)	At 286 K, the osmotic pressure of a glucose solution is 9.97 atm. Where the density of the solution is 1.12 g/m that $Kf = 1.86$ °C kg/mol?	
b)	Using a rough sketch, show the important components of a phase diagram.	[5]
c)	Estimate the vapour pressure of a liquid benzene at 20°C when its norm point is 80°C at a vapour pressure of is 101kPa, given that $\Delta_{\text{vap}}H=30.8\text{kJ/}$	
d)	Explain how Raoults law and Henry's law are used to specify the	chemical [5]

Question 5 [25 Marks]

- a) Illustrate the schematic temperature dependence of the chemical potential with temperature for the three phases of a chemical substance [8]
- b) Derive the equation for the vapor pressure lowering [4]
- c) Give brief explanation of the following observations;
 - Freezing -point constants are typically larger than boiling point constants of a solvent,
 - ii. There is a difference in the boiling point constants of water and benzene.

[6]

d) Derive that equation of the equilibrium constant for the generic chemical equation

$$aA(g) + bB(g) \rightarrow cC(g) + dD(g)$$
 [7]

Question 6 [25 Marks]

- a) Determine the molecular formula of a compound given that when 7.85 g sample of the compound having an empirical formula C₅H₄ is dissolved in 301 g of benzene, the freezing point of the solution is 1.04 °C below that of pure benzene. K_f is given by 5.12 °C kg/mol
- b) For the chemical equation (Question 5d), derive 4 equations for the chemical potential and use them with Hess' law to find an equation for $\Delta_r G$ (given that $\Delta_r G = \Delta \mu$)
- c) Calculate the difference in slope of the chemical potential against pressure on either side of (a) the normal freezing point of water and (b) the normal boiling point of water. Given that the densities of ice and water at 0°C are 0.917 gcm⁻³ and 1.00 gcm⁻³ and those of water and water vapour at 100°C are 0.958 gcm⁻³ and 0.598 gcm⁻³, respectively. By how much does the chemical potential of water exceed that of liquid water at 1.2 atm and 100°C?

The End

General data and fundamental constants

Quantity	•	Symbol	Value
Speed of light Elementary charge Faraday constant Boltzmann constant Gas constant		c $F = N_A e$ k $R = N_A k$	2.997 924 58 X 10 ⁸ m s ⁻¹ 1.602 177 X 10 ⁻¹⁹ C 9.6485 X 10 ⁴ C mol ⁻¹ 1.380 66 X 10 ⁻²³ J K ⁻¹ 8.314 51 J K ⁻¹ mol ⁻¹ 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ 6.2364 X 10 L Tom K ⁻¹ mol ⁻¹
Avogadro constant Atomic mass unit Mass		h $h = h/2\pi$ N_A u	6.626 08 X 10 ⁻³⁴ J s 1.054 57 X 10 ⁻³⁴ J s 6.022 14 X 10 ²³ mol ⁻¹ 1.660 54 X 10 ⁻²⁷ Kg
electron proton neutron Vacuum permittivity Vacuum permeability		m_{ϵ} m_{p} m_{n} $\epsilon_{o} = 1/c^{2}\mu_{n}$ $4\pi\epsilon_{o}$ μ_{o}	9.109 39 X 10 ⁻³¹ Kg 1.672 62 X 10 ⁻²⁷ Kg 1.674 93 X 10 ⁻²⁷ Kg 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ 1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ 4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹
Magneton Bohr nuclear g value Bohr radius Fine-structure constant Rydberg constant Standard acceleration of free fall		$\mu_{B} = e\hbar/2m_{e}$ $\mu_{N} = e\hbar/2m_{p}$ ge $a_{o} = 4\pi\epsilon_{o}\hbar/m_{e}e^{2}$ $\alpha = \mu_{o}e^{2}c/2h$ $R_{o} = m_{e}e^{4}/8h^{3}c\epsilon_{o}^{2}$	4π X 10 ⁻⁷ T ² J ¹ m ³ 9.274 02 X 10 ⁻²⁴ J T ⁻¹ 5.050 79 X 10 ⁻²⁷ J T ⁻¹ 2.002 32 5.291 77 X 10 ⁻¹¹ m 7.297 35 X 10 ⁻³ 1.097 37 X 10 ⁷ m ⁻¹
Gravitational constant		g G	9.806 65 m s ⁻² 6.672 59 X 10 ⁻¹¹ N m ² K.g ⁻²

Conversion factors

l cal: = .	4.184 joules (J)	l erg	=	1 X 10 ⁻⁷ J
l eV = .	1.602 2 X 10 ⁻¹⁹ J	l eV/molecule		96 485 kJ mol ⁻¹
Prefixes		μ m·c	ď	k M G
	femto pico nano	micro milli centi	deci	kilo mega giga
	10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹	10 ⁻⁶ 10 ⁻¹ 10 ⁻²	10 ⁻¹	10³ 10° 10°

PERIODIC TABLE OF ELEMENTS

				-		1						-,	-					-					
	18	VIIIV	4,003	IIc	7	20.180	, Ne	0:	39,948	År	<u>~</u>	83.80	X	J6	131.29	×c	54	(222)	, H	3,5			
	17	∀IIA				18.998	뜨	δ	35.453	Ü	17	79.904	Br	35	126.90	М	53	(210)	` + ∀	2		٠	
٠.	16	. Alk				15.999	0	EX 3	32.06	נעז	91	78.96	လ	J4	127.60	Ťc	52	(209)	Po	7 7			
	15	۸۸		. •		14,007	Z	1.7	30.974	P.	15	74.922	As .	. 23	121.75	S	51	208,98	Bi	83			
	14	IVA		, , t		12.011	<u>ن</u>	Ġ.	28.086	Si	<u>4</u> .	72.61	Ge	32	118.71	Sn	50	207.2		. 22			
	13	IIIA	,	•	· - · .	-10.81	→ B	V)	26.982	A.1	Ω.	69.723	G.	3.1	114.82	Ħ	49	204.38	E				
	12	118		,		mass -	Symbol - B	c No.				65.39	Zn	30	112:41	r U	48 .	200.59	He	. 08		٠,	•
	Ξ	18				Atomi	Symbol	Alami				63.546	Ç	2.9	107.87	Ag	47	196.97	Αп	79			
	10				•	. •				•		58.69	Z	28	106.42	Pd	46	195.08	Ρŧ	78	(267)	Uun	110
GROUPS	6.	VITIB	•.							ENTS		58,933	ů	27	102.9.1	15.	45	192,22		17	(266)	Une	109
ن ا	. 8									ION ELEMENTS	•	55.847	∏e	26	101.07	Ru	44	190.2	03	76	(597)	Uno	103
	7	VIIB						·.	•	SITION		54.938	Mn	2.5	98.907]	43	186.21	Re.	7.5	(202)	Uns	107 .
	9 :	YIB					•			TRANSIT		9		\top	· · · · · · · · · · · · · · · · · · ·	Σ	十	183.85		·	(263)		\dashv
	5	УВ										50.942	<u> </u>	23		2 :		180.95		17	(202)	Ha	105
	4	178										47.88	Ħ	22	91.224	Zr.	40	178.49	Ħ	72	(261)	F.	104
. [ب	IIIB										44.956	Sc	21	88.906	> ;	39	138.91	* Ln	57	(227)	** AC	89
	: 2	, \ <u>\</u>				9.012	Be	4	24,305	Mg	7	40.078	ຽ	20	87.62	7	38	137.33	 E	56	226.03	Ra	88
		<u> </u>	1.00X		-		 	7	22.990	Ę:		39.098	¥(6	85.468		1	132.91	Ű	55	223	L.	87
		PERIODS	;		. •		7						ঘ			5		• .	. 9			7	

	(260) Lr J03
173.04	(259)
Yb	No
70	102
168.93	(258)
Tm	Md '
69	101
167.26	(257)
Er	Fm
68	100
164.93	(252)
Ho	U.S
.67	99
162.50	(251)
Dy	Cf
66	· 98
158.93	(247)
Tb	Bk
65	97
157.25	(247)
Gd	Cm
64	96
(51.96	(243)
Eu	Am
63	95
150.36	(244)
Sm	Pu
62	94
(145)	237.05 (244) (243) (247) (247) (251) (25
Pm	Np Pu Am Cm Bk Cf E
61	93 94 95 96 97 · 98 99
Nd 60	
40. 2 40.91 44.24 Cc Pr Nd 58 59 60	232.04 231.04 238.0 Tli Pa U 90 91 92
140.12	232.04
Ce	Tlı
58	90

*Lanthanide Series

**'Aclinide Series