UNIVERSITY OF SWAZILAND FINAL EXAMINATIONS ACADEMIC YEAR 2018/2019

TITLE OF PAPER:

Atomic Structure, Chem. Bonding and

Chemistry of s- and p-Block

Elements/Introductory Chemistry

COURSE CODE:

CHE221/C201

TIME ALLOWED:

Three (3) Hours

INSTRUCTIONS:

THERE ARE TWO SECTIONS: SECTION A AND SECTION B.

ANSWER ALL THE QUESTIONS IN SECTION A AND ANY
THREE QUESTIONS FROM SECTION B. SECTION A IS
WORTH 40 MARKS AND EACH QUESTION IN SECTION B IS
WORTH 20 MARKS.

THE <u>ANSWER SHEET</u> FOR SECTION A IS ATTACHED TO THE QUESTION PAPER. GIVE YOUR ANSWERS TO SECTION A QUESTIONS BY <u>RECORDING ON THE ANSWER SHEET THE LETTER CORRESPONDING TO THE CORRECT ANSWER</u>.

DETATCH THE ANSWER SHEET FROM THE QUESTION PAPER AND FILL IN ALL THE INFORMATION REQUIRED IN THE SPACES PROVIDED, BEFORE YOU LEAVE, PLACE THE ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

A periodic table, a table of constants and a copy of Slater's Rules have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a)								o 3s, 3p	, and 3d orbi	tals
b)	Use sk	etches	s of 2s,	3p and	d 4d or	ur ansv bitals t ibution		n betwe	en (a) the rad	[3] ial [7]
c)	the fu	nction	adial th f(r) = r ² a _x = a _o /2	² e-b, wh	ibutior iere b =	ı functi = 2Zr/a	on P(r) for a _{o,} show that	1s orbit	tal is proporti st probable ra	ional to adius
										[8]
d)	Given the or	that th	ne angu on of tl	ılar fui ne orbi	nction tal.	of an oı	bital is prop	ortiona	1 to cos²θ, de	termine [7]
					Qu	estion	Two			
a)	functi	ons giv	nsion, s ven bel and the ii)	ow. In	each c	ase lab	arts of orbita al the drawir	als that ng with	transform as the correct C	the artesian [7]
b)	Give t	he gro	und-st	ate ele	etron c	onfigur	ation for eac	ch of the	e following:	
	i)	Р3-	ii)	Co ³⁺		iii)	Eu			[6]
c)	For ea	ach of nt. Sho	the spe	cies in you a	b) aborrive at	ove, stat your a	te the numbers	er of un	paired electro	ons [6]
d)	For ea	ach of ent or i	the foll non-po	owing lar cov	species alent.	s, state Explain	whether the your answe	bondin er.	g is ionic, po	lar
	i)	BeCl	2	ii)	BaO		iii) PbI ₂	iv)	AsH ₃	[6]

Question Three

- a) The halogens react among themselves to form compounds, called "interhalogens". One of these compounds is iodine monochloride, ICl, in which the energies of molecular orbitals, arising from valence orbital interactions only, have been calculated and found to increase in the order 1σ < 2σ < 1π < 3σ < 2π < 4σ .
 - Draw a schematic molecular orbital energy-level diagram for ICl, with all the molecular orbitals labelled. [Note: Energies of valence ao's increase in [8] the order 3s (Cl)<3p(Cl)<5s(I)<5p (I)]. [2]
 - ii) Give the ground state electron configuration of ICl

orbital).

- iii) For each of the molecular orbitals 1σ , 1π , and 2π , sketch the orbital diagram illustrating interaction of atomic orbitals (to form the molecular
- b) Consider the atomic species Sn and Sn2+. For each of the species, calculate the effective nuclear charge for a valence electron.
- c) The first and third ionization energies of tin are 708 and 2943 kJ mol-1 respectively. Comment on these values, especially in light of effective nuclear [2] charge values you calculated in b) above.

Question Four

Give a sketch of the Born-Haber cycle for the formation of MgO(s) from a) the elements in their standard states. From the following data, calculate the electron affinity of an oxygen atom in gaining two electrons to give the oxide ion, 02:

Standard heat of formation of MgO(s)600 kJ mole-1 Lattice energy of MgO(s)3860 kJ mole -1
Ionization energy of Mg(g) to give Mg^{2+} (g)+2170 kJ mole-1 Dissociation energy of $O_2(g)$ +494 kJ mole-1 Heat of sublimation of Mg(s)+150 kJ mole-1 [12]

- The radius a tungsten atom is 141 pm. Draw the bcc unit cell of b) tungsten metal.
 - Calculate the length (ℓ) of the unit cell of tungsten metal i)
 - Calculate the volume of the unit cell ii)

- iii) Determine the number of tungsten atoms per unit cell
- iv) Calculate the density of tungsten
- v) If a carbon atom is placed at the centre of every face of the unit cell, what would be the formula of the resulting compound?

[13]

Question Five

- a) For each of the following species, determine domain geometry, molecular geometry and hybridization of atomic orbitals around the central atom.
 - i) SOF4
- ii) IF₅

[9]

- b) Consider the molecule XeO₃F₂, where Xe is the central atom.
 - i) Write at least four non-equivalent Lewis (i.e. resonance) structures.
 - ii) Use formal charges to determine which one of the structures from i) above is expected to be the most stable.

[10]

- c) Use appropriate diagrams to illustrate the nature of hydrogen bonding interactions in the following systems:
 - i) Acetic acid (CH₃COOH)
 - ii) A liquid mixture of chloform (CHCl₃) and propanone (i.e. CH₃COCH₃)
 - iii) Liquid HF

[6]

Question Six

a)	Give	complete reaction equations for the following processes.	
	i) ii) iii) iv) v) vi)	The reaction of SiF ₄ with H ₂ O Synthesis of calcium carbide Reaction of aluminium carbide with water Reaction of Li ₃ N with water The production of nitric acid The reaction of P ₄ O ₁₀ with water	
			[14]
b)	Draw	a Lewis structure for each of the following:	
	(i)	Molecule of phosphorus P ₄	
	(ii)	Molecule of sulphur S ₈ .	
			[5]
c)		h of the following schemes for the repeating pattern of c s are not ways of generating close-packed lattices? Exp er.	
	i)	ABCABBC iii) ABAC iii) ABAA iv) AE	BCBC [6]

Commonly Used Physical Constants

Constant	Symbol	Value
acceleration due to gravity	g	9.8 m s ⁻²
atomic mass unit	amu, m _u or u	1.66 x10 ⁻²⁷ kg
Avogadro's Number	N	6.022 x 10 ²³ mol ⁻¹
Bohr radius	ao	0.529 x 10 ⁻¹⁰ m
Boltzmann constant	k	1.38 x 10 ⁻²³ J K ⁻¹
electron charge to mass ratio	-e/m _e	-1.7588 x 10 ¹¹ C kg ⁻¹
electron classical radius	$ m r_e$	2.818 x 10 ⁻¹⁵ m
electron mass energy (J)	$ m m_e C^2$	8.187 x 10 ⁻¹⁴ J
electron mass energy (MeV)	$m_{\rm e}c^2$	0.511 MeV
electron rest mass	m _e	9.109 x 10 ⁻³¹ kg
Faraday constant	F	9.649 x 10 ⁴ C mol ⁻¹
fine-structure constant	α	7.297 x 10 ⁻³
gas constant	R	8.314 J mol ⁻¹ K ⁻¹
gravitational constant	G	6.67 x 10 ⁻¹¹ Nm ² kg ⁻²
neutron mass energy (J)	m _n c ²	1.505 x 10 ⁻¹⁰ J
neutron mass energy (MeV)	m _n c ²	939.565 MeV
neutron rest mass	m _n	1.675 x 10 ⁻²⁷ kg
neutron-electron mass ratio	m_n/m_e	1838.68
neutron-proton mass ratio	m_n/m_p	1.0014
permeability of a vacuum	μο	4π x 10 ⁻⁷ N A ⁻²
permittivity of a vacuum	εο	8.854 x 10 ⁻¹² F m ⁻¹
<u>Planck constant</u>	h	6.626 x 10 ⁻³⁴ J s
proton mass energy (J)	m_pc^2	1.503 x 10 ⁻¹⁰ J
proton mass energy (MeV)	$ m m_p c^2$	938.272 MeV
proton rest mass	m_p	1.6726 x 10 ⁻²⁷ kg
proton-electron mass ratio	$ m m_p/m_e$	1836.15
Rydberg constant	R _H	1.0974 x 10 ⁷ m ⁻¹
speed of light in vacuum	С	2.9979 x 10 ⁸ m/s
Electronic Charge	е	1.602 x 10 ⁻¹⁹ C

Periodic Table of the Elements

Rei	Main vresentati	Main Group Representative Elements	ents T									<u></u>		Rej	Main Group Representative Elements	Group ve Eleme	ats	
				•														8A 18
-	Щ	<u>-</u>											,				L	2
4	1.00794	ζ ~ι									÷		. 3A	4A -	5.A	6.A	74	He
	,		-	L	,				L	ŗ		•	CT	14	C1	္		4.002602
Ç	ი ;	φ 4 φ			Metals		Metalloids	alloids]	Nonmetals	tals		Ŋ	9	7	∞	6	10
1	1 3	a Q											<u>m</u>	ပ	Z	0	524	Š
/	6.941	9.012182					Transition metals	n metals					10.811	12.0107	14.0067	15.9994	18,998403	20.1797
r	Ξ ;	7 5								- Jugur			13	14	15	16	17	18
n	Z Z		æ,	4 <u>B</u>	2B	GB,	7B	L	— 8B —	Γ	1B	2B	Ψ	Si	مر	S	บ	Ar
	22.989770	7	0	4	2	9	7 55	∞	6	10	I	12	26.981538	28.0855	30.973761	32.065	35.453	39 948
	6 1	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36
4	M		Sc	Ξ	>	ప	Mn	Fe Fe	ప	Z	Cu	Zn	Ga	g S	As	Se	87	. Y
	39.0983	[44.955910	47.867	50.9415	51.9961	54.938049	55.845	58.933200	58.6934	63.546	65.39	69.723	72.64	74 92160	78 96	70 00	03 63
•	37	38	39	40	41	42	43	44	45	46	47	48	49	50	5.1	52	53	20.5
5	Rb		Σ	Zr	q N	Mo	Tc	Ru	Rb	Pd	Ag	Сď	T,	Sn	Sp	T e	} =	Xe .
1.	85.4678	87.62	88.90585	91.224	92.90638	95.94	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
	55	56	7.	72	73		75	97	77	78	79	80	2	83	83	84	85	86
9	స		ī	H	Та	×	Re	Os	Ir	Pt	Au	H	Ë	Pb	. E	Po	Ąŧ	200
	132.90545		174.967	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	[208.98]	(209.991	[222.02]
ı	87	88	103	104	105	106	107	108	109	110	111	112	113	114	1115	116	117	118
	T.	Ka	ij			S S	Bh	Hs	Mt	Ds	Rg	Cn		Æ		Ĺv	*	
	[223.02]	223.02] [226.03]	[262.11]	[261.11]	[262.11]	[266.12]	[264.12]	[269.13]	[268.14]	[281.15]	[272.15]	[285]	[284]	[289.2]	[288]	[293]	[294]	[294]

	57	58	65	09	61	62	63	64	65	99	67	68	69	70
Lanthanide series	La	ပိ	P.	PZ	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Χp
	138.9055	140.116	140.90765	144.24	[145]	150.36	151.964	157.25	158.92534		164.93032		168.93421	173.04
	68	90	91	92	93	94	95	96	76	86	66	1	101	102
Actinide series	Ac	Th	Pa	Ω	ďN	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	Š
	[227.03]	232.0381	231.03588	238.02891	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]

^aThe labels on top (1A, 2A, etc.) are common American usage. The labels below these (1, 2, etc.) are those recommended by the International Union of Pure and Applied Chemistry (IUPAC).

Except for elements 114 and 116, the names and symbols for elements above 113 have not yet been decided. Atomic weights in brackets are the names of the longest-lived or most important isotope of radioactive elements. Further information is available at http://www.webelements.com