UNIVERSITY OF SWAZILAND

RESIT EXAMINATION – 2019, JULY

TITLE OF PAPER : Introductory Chemistry ||

COURSE NUMBER :

CHE152

TIME

: Three Hours

INSTRUCTIONS

Answer any Four questions (each question is 25 marks)

NB:

Non-programmable electronic calculators may be used

A data sheet and a periodic table are attached

Useful data and equations:

1 atm = 760 Torr = 760 mmHg

1 atm = 101325 Pa

Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$

Van der Walls equation:

This Examination Paper Contains Six Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

Question 1

a. Name the following compounds:

(15)

CH2CH2CH2CH3 vi.

viii. CH₃(CH₂)₃CH₃

vii.

b. Draw structured of the following compounds:

(10)

- 1,3-butadiene i.
- 3-bromo-2,3-dimethylpentanamine ii.
- 3-methyl-5-hexenoic acid iii.
- 1-iodo-1,3-dimethyl-2-pentanone iv.
- 2-ethoxy-3-bromoheptane

Question 2

a. Write the equilibrium-constant expression for the following reactions:

(9)

i.
$$SO_2(g) + NO_2(g) \longrightarrow SO_2(g) + NO(g)$$

- $(NH_4)_2Se(s) \longrightarrow 2NH_3(g) + H_2Se(g)$ ii.
- $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ iii.
- b. A solution formed by dissolving an antacid tablet has a pH of 9.18. Calculate $[OH^{-}]$. (6)
- c. An aqueous solution of HNO₃ has a pH of 2.34. What is the concentration of the acid? (10)

Question 3

- a. A 0.007500 m³ volume of carbon dioxide was collected at 45.15°C and 121.59 kPa. The volume was then decreased by 75.00% while the temperature was halved. (10)Calculate the new pressure in the container.
- b. Nitrous oxide can be formed by thermal decomposition of ammonium nitrate.

$$NH_4NO_{3(s)}$$
 \longrightarrow $N_2O_{(g)}$ + $2H_2O_{(g)}$

What mass of ammonium nitrate would be required to produce 115 L of H₂O at 2500 (10)Torr and 75°C

c. At 25°C, 0.300 moles of $CH_{4(g)}$, 0.200 mole of $H_{2(g)}$ and 0.400 mole of $N_{2(g)}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask. (5)

Question 4

a. Nitrogen dioxide decomposes to nitric oxide and oxygen via the reaction:

$$2NO_2 \rightarrow 2NO + O_2$$

In a particular experiment at 300 °C, [NO₂] drops from 0.0100 to 0.00650 M in 100 s. (7)what is the rate of disappearance of NO2 for this period in M/s (10)

- b. What are the valid rate expressions for the reactions?
 - $2 \text{ ClO}_2 \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \rightarrow \text{ ClO}_3$ (aq) + ClO₂- (aq) + H₂O (1) with respect to H₂O.
 - $4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$ with respect to NH_3
 - $2NO_2 \rightarrow 2NO + O_2$ with respect to NO iii.
 - $2N_2O_5$ (soln) $\rightarrow 4NO_2$ (soln) + O_2 (soln) with respect to NO_2 iv.
 - with respect to Br₂ $Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$

a. What are the overall reaction orders for the following reactions and what are the units of the rate constant for the rate law: (8)

i.
$$2N_2O_{5(g)}$$
 \longrightarrow $4NO_{2(g)}+$ $O_{2(g)}$ Rate = $k[N_2O_5]$
ii. $CHCl_{3(g)}+$ $Cl_{2(g)}$ \longrightarrow $CCl_{4(g)}+$ $HCl_{(g)}$ Rate = $k[CHCl_3][Cl_2]^{1/2}$

Question 5

a) Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH₄ at 298 K:

- b) Beer contains both ethanol and glucose ($C_6H_{12}O_6$) in different proportions. These contribute to the total energy of beer.
 - i. Write balanced equations for the complete combustion of ethanol and glucose(5)
 - ii. Given that the standard enthalpy change of combustion for ethanol and glucose are -1370 kJ mol⁻¹ and -3000 kJ mol⁻¹ respectively, calculate the enthalpy change per gram for both glucose and ethanol. (10)

SI Units and Conversions

Unit	Symbol	SI units				
Newton	N	kg.m.s ⁻²				
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²				
Joule	J	kg.m ² .s ⁻² or N.m or AVs				
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹				
Coulomb	С	A.s				
Volt	V	kg.m 2 .s $^{-3}$.A $^{-1}$ or J.C $^{-1}$				
Ohm	Ω	$kg.m^2.s^{-3}.A^{-2}$ or $v.A^{-1}$				
Amp	Α	1Cs ⁻¹				

Pressure Units and conversion factors

Pa	l Pa = 1 N.m ⁻²				
Bar	1 bar = 10 ⁵ Pa				
Atmosphere	1 atm = 101.325 kPa				
Torr	760 Torr = 1 atm				
	760 Torr = 760 mmHg= 101.325 kPa				

General data and Fundamental Constants

Gas constant	R	$8.314 ext{ } 51 ext{ } J.K^{-1}.mol^{-1}$ $8.314 ext{ } 51 ext{ } x ext{ } 10^{-2} ext{ } L.bar.K^{-1}.mol^{-1}$ $8.205 ext{ } 78 ext{ } x ext{ } 10^{-2} ext{ } L.atm.K^{-1}.mol^{-1}$ $62.364 ext{ } L.Torr.K^{-1}.mol^{-1}$
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³

UNIVERSITY OF SWAZILAND
Department of Chemistry

He 4.0026 Ne	20.179	Ar	39.948	Kr	83.80	کر کر	131.29		Rn Tu	(232)			
		2	35.453	າ	79.904	54	126.90	86		(210)	٠		
<u>(+</u>	į	<u> </u>	3.5	<u> </u>		53		85	₹				
C C	15.999	S	32.064	ξ		52 T.a	1	84	Д	(209)			
Z	14.007	d	30.974	As	74.922	51 C	121.75	83	Bi	208.98			
	12.011	Si	28.086	Ge	72.61	S0 S	718,71	82	Pb	207.2			
<u>~</u>	10.811	4	26.983	Ça	69.723	49 5			Ę	204.38			
<u> N</u>	;	<u> </u>		2	م	4				<u></u>			
			30	Zn	65.39	⁴⁸ ر		80	Hg				
ight			96	Cu	63.546	47	107.87	62	Αn	196.97			
Atomic Weight				Z	58.69	DĀ		. 82	¥	195.08			
[%]				ç	58.933	40			Ţ	192.22			
He 4.00				ريخ ح	55.847	44 45 45 D.1	101.07	77	- SO	190.2			
mber				_	54.938	4	(98)	9/		186.2			
Atomic Number			,	Mm		43 To	-	7.5	Re				
Ate				Ç	51.996	42	1 VIU 95.94	74	×	183.85			
				>	50.942	41 N TS	92.906	73	Та	180.95			
				Ξ	47.88	7	91.224		Hf	178.49			
			-	S S	44.956	40	1 88.906	72	La	138.91		Ac	227.03
			-	- 5		39		57			68		
A A	9.0122	$^{^{12}} m{Mg}$	24.305	Ca Ca	40.078	38 88	3.62 87.62	56	Ba	137.33	88	Ra	226.03
1 H 1.0079	6.941	Z Za	22.990	<u>**</u>	39.098		Κ0 85.47	55	Ĉ	132.91	87	F	

71	174.97	103	Lr (260)
<u>ځ</u>	173.04	102	No (259)
69 T	168.93	101	Md (258)
~~	167.26	100	Fm (257)
	164.93	66	Es
NO.	162.50	86	$\mathbf{Cf}_{(251)}$
ž K	158.93	76	BK 247
ړ د ک	157.25	96	$\mathbf{Cm}_{(247)}$
<u>, , , , , , , , , , , , , , , , , , , </u>	151.97	95	$\mathbf{Am}_{_{(234)}}$
22	5III 150.36	94	Pu (244)
	F III 146.92	93	N p 237.05
99	144.24	92	U 238.03
65 D -	F L 140.91	91	Pa 231.04
ξ ξ	1 40.12	86	Th