UNIVERSITY OF SWAZILAND

MAIN EXAMINATION -- 2019, JUNE

TITLE OF PAPER

Introductory Chemistry II

COURSE NUMBER

CHE152

TIME

Three Hours

INSTRUCTIONS

1. Answer Question I (compulsory) and any other three questions (each question is 25 marks)

Non-programmable electronic calculators may be used NB:

A data sheet and a periodic table are attached

Useful data and equations:

1 atm = 760 Torr = 760 mmHg

1 atm = 101325 Pa

Arrhenius equation: $k = Ae^{-E_a/RT}$ or $lnk = lnA - \frac{E_a}{RT}$

Van der Walls equation:

This Examination Paper Contains Six Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

Question 1 (Compulsory)

- a. Name the following compounds:

 - i. $CH_3CH_2 \longrightarrow CH_2CH_3$
 - CH₃CH₂C H

 - CH₃CH₂CHCH₂CHCH₂CH₃

 iv. H₃C CH

 ...
 - H₃CH₂C H
- b. Draw the structures of the following compounds:

(10)

(10)

- i. 3-chloro-3-cyclohexenone
- ii. 2,3,3-trimethyl-4-octyne
- iii. 3-chloro-3-methyl-1-pentene
- iv. 3-methyl-5-hexen-3-ol
- v. 3-methyl-3-hydroxybutanoic acid
- c. Identify the functional groups in each of the following compounds:
 - i. CH₃—CH₂—OH

(1) ii.

(2)

(8)

Question 2

- a. Write the equilibrium-constant expression for the following reactions:
 - i. $CO_2(g) + 2H_2(g) \longrightarrow CH_3OH(g)$
 - ii. $CO_2(s) + H_2O(l) \longrightarrow H^+(aq) + HCO_3^-(aq)$
 - iii. Cr(s). +. $3 Ag^{+}(aq)$ \longrightarrow $Cr^{3+}(aq)$ + 3Ag(s)

iv.
$$3Fe_{(s)} + 4H_2O(g) \longrightarrow Fe_3O_4(s)$$
. +. $4H_2(g)$

b. The Keq for the equilibrium below is 7.52×10^{-2} at 480.0° C.

(3)

 $2Cl_2(g) + 2H_2O(g) \longrightarrow 4HCl(g) + O_2(g)$ What is the value of Keq at this temperature for the following reaction?

$$4HCl(g) + O_2(g) \longrightarrow 2Cl_2(g) + 2H_2O(g)$$

c. Sulfur trioxide decomposes at high temperature in a sealed container:

$$2 SO_3(g) \Longrightarrow 2 SO_2(g) + O_2(g)$$

Initially, the vessel is charged at 1000 K with $SO_3(g)$ at a partial pressure of 0.500 atm. At equilibrium the SO_3 partial pressure is 0.200 atm. Calculate the value of K_p at 1000 K. (9)

d. For the reaction

$$PCl_5(g) \iff PCl_3(g) + Cl_2(g) \qquad \Delta H^\circ = 87.9 \text{ kJ}$$

in which direction will the equilibrium shift when

- i. $Cl_2(g)$ is added
- ii. the temperature is increased
- iii. the volume of the reaction system is decreased
- iv. $PCl_3(g)$ is removed?

(5)

Question 3

- a. The pressure in a natural-gas tank is maintained at 2.20 atm. On a day when the temperature is -25 °C, the volume of gas in the tank is 3.25×10^3 m³. What is the volume of the same quantity of gas on a day when the temperature is 53 °C? (7)
- b. A 0.75-mol sample of oxygen gas is confined at 0°C and 1.0 atm in a cylinder with a movable piston. The piston compresses the gas so that the final volume is a quarter of the initial volume and the final pressure is 5.2 atm. What is the final temperature of the gas in degrees Celsius? (10)
- c. Sodium bicarbonate (2.00 kg) is reacted with excess concentrated hydrochloric acid at 37.0° C and 1.00 atm. What volume of CO_2 will be produced. (8)

Question 4

- a) What is the conjugate base of $HClO_4$, H_2S , PH_4^+ , HCO_3^- ? (4)
- b) What is the conjugate acid of CN^- , SO_4^{2-} , H_2O , HCO_3^{-} ? (4)
- c) A solution is made by mixing 27.3 mL of 0.28 M HCl and 25.0 mL of 0.35 M NaOH.

 Calculate the pH of this solution. (10)
- d) Calculate the concentration of $OH^-(aq)$ in a solution in which (7)

i)
$$[H^+] = 3 \times 10^{-6} M;$$

ii)
$$[H^+] = 50 \times [OH^-]$$

Question 5

a) In the coal-gasification process, carbon monoxide is converted to carbon dioxide via the following reaction:

$$CO(g)$$
. + $H_2O(g)$ $CO_2(g)$ + $H_2(g)$

In an experiment, 0.35 mol of CO and 0.40 mol of H_2O were placed in a 1 L reaction vessel. At equilibrium, there were 0.19 mol of CO remaining. Calculate K_{eq} at this temperature. (10)

a) Given the following reaction:

$$2Ba_{(s)} + O_{2(g)} \longrightarrow 2BaO_{(s)} \Delta H^{\circ} = -1107.0 \text{ KJ}$$

How many KJ of heat are released when:

i.
$$4.98 \text{ g of BaO}_{(s)}$$
 is produced (8)

ii. $10.66 \text{ g of Ba}_{(s)}$ reacts completely with oxygen to form BaO(s)? (7)

Question 6

a. Consider the following reaction:

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$
 Rate = $k[H_2][I_2]$

i. What is the reaction order of the reactant
$$H_2$$
? (4)

b. The following data were measured for the reaction of nitric oxide with hydrogen:

$$2 \text{ NO}(g) + 2 \text{ H}_2(g) \rightarrow \text{ N}_2(g) + 2 \text{ H}_2\text{O}(g)$$

Experiment Number	[NO] (M)	[H ₂] (M)	Initial Rate (M/s)
1	0.10	0.10	1.23×10^{-3}
2	0.10	0.20	2.46×10^{-3}
3	0.20	0.10	4.92×10^{-3}

i. Determine the rate law for this reaction.

(5)

ii. Calculate the rate constant.

(5)

iii. Calculate the rate when [NO] = 0.050 M and [H₂] = 0.150 M.

(5)

SI Units and Conversions

Unit	Symbol	SI units
Newton	N	kg.m.s ⁻²
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²
Joule	J	kg.m ² .s ⁻² or N.m or AVs
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹
Coulomb	С	A.s
Volt	V	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹
Ohm	Ω	kg.m ² .s ⁻³ .A ⁻² or v.A ⁻¹
Amp	Α	1Cs ⁻¹

Pressure Units and conversion factors

Pa	Pa = 1 N.m ⁻²
Bar	1 bar = 10 ⁵ Pa
Atmosphere	1 atm = 101.325 kPa
Torr	760 Torr = 1 atm
	760 Torr = 760 mmHg= 101.325 kPa

General data and Fundamental Constants

QCIICI ai aa	tu unia i aniaa	manual Constants
Gas constant	R	$8.314 ext{ } 51 ext{ } J.K^{-1}.mol^{-1}$ $8.314 ext{ } 51 ext{ } x ext{ } 10^{-2} ext{ } L.bar.K^{-1}.mol^{-1}$ $8.205 ext{ } 78 ext{ } x ext{ } 10^{-2} ext{ } L.atm.K^{-1}.mol^{-1}$ $62.364 ext{ } L.Torr.K^{-1}.mol^{-1}$
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹
Molar volume of an ideal gas at 0°C and 1 atm	V_{m}	22.414 dm ³

UNIVERSITY OF SWAZILAND Department of Chemistry

He 4.0026	Ne 20.179	18 Ar 39.948	36 KT 83.80	54 Xe	86 Rn (222)	
61	10 F 18.998	CI 33.453	Br 79.904	53	At (210)	
	8 O 906.21	16 S 32.064	Se. 78.90	22 Te	Po (209)	
	7 N 14.007	15 P 30.974	33 AS 74.922	Sb 121.75	Bi 208.98	
	6 C 12.011	14 Si 28.086	32 Ge 72.6	Sn Sn 118.71	82 Pb	
	S B 10.811	13 AI 26.982	31 Ga 69.723	49 In 114.82	81 TI 204.3	
			30 Zn 65.39)edec(
	ight	·	Cu 63.546	7.87	79 80 Au 196.97	
	Atomic Weight		28 Z 58.69	46 47 Ag	78 Pt 195.08	
He	4.0026		Co 58.933	45 Rh	Ir 192.2	
N			847	Ru 101.07	76 Os 190.2	
Atomic Number			25 Min 54.938	Tc (%)	75 Re 186.2	
Ato			Cr Cr 51.99	Mo	74 W 183.83	
	,		23 V 50.942	4	55	
			22 Ti	64 Z	72	30
			Sc 44,956	39 X	57 La 138,91	89 AC 227.03
	Be 9.0122	$\mathbf{M}^{12}_{24.305}$	20 Ca 40.078	38 Sr	56 Ba 137.33	88 Ra 226.03
H 1.0079	Li 6.941	Na 22.990	19 K K 39,098		SS SS S S I32.91	87 8 Fr (223)

58	65	09	19	62	63	64	65	99	29	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	g	Tp	Dy	Ho	Er	Tm	Λp	H
140.12							158.93				168.93	173.04	
8	16	92	93	94	95	. 96	16	86	66	001	101	102	103
Th	Pa	ח	c Z	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	°Z	Ľ
232.04		238.03		(544)					(252)		(258)	(259)	(260,