UNIVERSITY OF ESWATINI

MAIN EXAMINATION

ACADEMIC YEAR 2018/2019

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE <u>SIX (6)</u> QUESTIONS. ANSWER <u>ANY FOUR (4)</u> QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)	Determine the <u>oxidation state</u> of the metal, its <u>dⁿ total electron count</u> , and the <u>number of electrons</u> in each of the following compounds. Which of the compounds will be stable? (i) Ir(H)(CO)(dppe) ₂ (comment: dppe is bidentate) (ii) [Mo(H)(CO) ₂ (dppe) ₂] ⁺ (comment: dppe is bidentate)	total these
	 Cp₃NbMe₂ (comment: one Cp is η¹) Rh(O₂CCH₃)₂ (comment: dimer with Rh-Rh bond) 	l
(b)	Sketch interactions of 1,3-butadiene, (CH ₂ =CH-CH=CH ₂) with a metal atom η^2 (ii) η^4 [4]	
(c)	Suggest products in the following reactions, and give likely structures for products: (i) Fe(CO) ₅ irradiated with C ₂ H ₄ (ii) Re ₂ (CO) ₁₀ with Na/Hg (iii) Na[Mn(CO) ₅] with ONCI (iv) Ni(CO) ₄ with PPh ₃ [8]	
(d)	$H_2Os_3(CO)_{10}$ catalyses the isomerization of alkenes: $RCH_2CH=CH_2 \rightarrow E\text{-RCH}=CHMe + Z\text{-RCH}=CHMe$ By determining the cluster valence electron count for $H_2Os_3(CO)_{10}$ deduce makes this cluster an effective catalyst. [5]	
QUE	TION TWO	
(a)	Use Wade's rules to suggest likely structures for (i) B_5H_9 (ii) $[B_8H_8]^{2-}$ (iii) $[Os_8(CO)_{22}]^{2-}$ [9]]
(b)	Pick out pairs of isoelectronic species from the following list: HF, [NO ₂] ⁺ , NH ₃ , [H ₃ O] ⁺ , [OH] ⁻ , CO ₂ [3]]
(c)	Propose two syntheses for MeMn(CO) ₅ both starting with Mn ₂ (CO) ₁₀ , with using Na and one using Br_2 . You may use other reagents of your choice. [8]	
(d)	Which Ln ³⁺ ion would you expect to show the same colour as (i) Tb ³⁺ (ii) Tm ³⁺ (iii) Sm ³⁺ [3] Justify your answers.	

QUESTION THREE

- (a) (i) Assign the <u>oxidation state</u> of M in $(\eta^4-C_8H_8)M(CO)_3$]. Assuming the 18-electron rule applies, <u>identify</u> the <u>second</u> row transition metal, M.
 - (ii) What charge, z, would be necessary for [(η⁵-C₆H₇)Fe(CO)₃]² to obey the 18-electron rule? [3]
- (b) (i) Give a definition of a metal cluster.
 - (ii) What are the two broad classes of metal carbonyl clusters?
 - (iii) $M_3(CO)_{12}$ clusters (M = Ru and Os) are unreactive. Give three ways by which they can be converted into more reactive derivatives. [8]
- (c) There is *one oxidative addition* reaction and *one reductive elimination* reaction in the figure below. Give <u>balanced chemical equations</u> for them (both) and assign <u>oxidation numbers</u> to all the rhodium complexes in the equations. [6]

The main catalytic cycle in the homogeneous hydrogenation of alkene by rhodium-phosphine complexes, $L = PPh_3$.

(d) Propose the main steps in the catalytic cycle for the conversion of pent-1-ene to hexanal using HRh(CO)₄ as the catalyst precursor. [8]

QUESTION FOUR

- (a) Using the concept of isolobality, give
 (i) the *hydrogen-nitrogen* molecule or molecular fragment that is isolobal with CH₃.
 - (ii) the *hydrogen-boron* molecule or molecular fragment that is isolobal with the O atom.
 - (iii) a nitrogen-containing species that is isolobal with [Mn(CO)₅]⁻. [3]
- (b) [Mn₂(CO)₁₀] contains a metal-metal bond. Its "formal oxidation state" is zero because M-M bonds "do not count" in the calculation of oxidation state.
 - (i) What is the formal oxidation state of octahedral [Mn(CO)₅Me]?
 - (ii) What oxidation state do you think best describes [Mn₂(CO)₁₀]? [4]
- (c) (i) Predict whether the equilibrium constants for the following reactions should be greater than 1 (reaction lies to the right) or less than 1 (reaction lies to the left):
 - (1) $CdI_2 + CaF_2 CdF_2 + CaI_2$
 - (2) $[CuI_4]^{2-} + [CuCI_4]^{3-} \leftrightarrows [CuCI_4]^{2-} + [CuI_4]^{3-}$
 - (ii) Account for the trend in acidity: $[Fe(OH_2)_6]^{2^+} < [Fe(OH_2)_6]^{3^+}$ [7]
- (d) (i) Give the <u>electron count</u> for the metal centre in Ir(CO)(NO)(PPh₃)₂.
 - (ii) Draw the structures of three complexes $(cyclo-C_5H_5)Rd(CO)_n$ (n = 2, 3, 4) assuming that the complexes obey the 18-electron rule. [7]
- (e) For the metallocene complex $[(\eta^5-C_5H_5)_2TiCl_2]$:
 - (i) Calculate the number of valence electrons for the complex.
 - (ii) Calculate the formal oxidation state for the titanium (Ti) atom.
 - (iii) Show that the complex could be regarded as having a coordination number of 4 or 12. [4]

QUESTION FIVE

Identify isotopes A - F in the following sequence of nuclear reactions: (e) (a)

(i)
$${}^{238}U \xrightarrow{(n, \gamma)} A \xrightarrow{-\beta^-} B \xrightarrow{-\beta^-} C$$

(ii)
$$\mathbf{p} \xrightarrow{-\beta^{-}} \mathbf{E} \xrightarrow{(\mathbf{n}, \gamma)} {}^{242}\mathbf{Am} \xrightarrow{-\beta^{-}} \mathbf{F}$$
 [6]

- Metal-Metal bonding in multinuclear species is not always clear-cut. Solely on (b) the basis of the 18-electron rule, suggest whether $(\eta^5-C_5H_5)Ni(\mu-PPh_2)_2Ni(\mu-PPh_2)_2Ni(\mu-PPh_$ C_5H_5) might be expected to contain a metal-metal bond. [3]
- Suggest what change in cluster structure might accompany the reaction: (c) [6] $[Co_6(CO)_{15}N]^- \rightarrow [Co_6(CO)_{13}N]^- + 2CO$
- Confirm that H₂Os₃(CO)₁₁ has sufficient valence electrons to adopt a (i) (d) triangular metal framework..
 - Do the modes of bonding of the CO and H ligands in (d)(i) above affect (ii) the total valence electron count?
 - Comment on the fact that H₂Os₃(CO)₁₀ also has a triangular Os₃-core. [5] (iii)
- Considering the bonding in metal carbonyls, what factors would affect the (e) (i) C-O stretching vibrations?
 - A carbonyl complex has linear OC-M-CO group. How will the CO (ii) stretching frequency change (increase, decrease or remain the same) when one CO is replaced by triethylamine, (CH₃CH₂)₃N:? Justify your answer.

[5]

[4]

OUESTION SIX

- Suggest products for the following reactions. (a)
 - $ClF + BF_3 \rightarrow$
 - $CsF + IF_5 \rightarrow$ (ii)
 - $SbF_5 + ClF_5 \rightarrow$ (iii)
 - $Me_4NF + IF_7 \rightarrow$ (iv)
- Predict the structures of (b) $[BrF_2]^+$ [9] BrICl-(ii) (iii) [ICl₄] (i)
- Identify the starting isotopes A and B in each of the following syntheses of (c) transactinoid elements:
 - (i)
 - A + ${}^{4}_{2}\text{He} \rightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$ B + ${}^{16}_{8}\text{O} \rightarrow {}^{255}_{102}\text{No} + 5({}^{1}_{0}\text{n})$ [2]

- (d) The common ores of nickel and copper are sulphides. By contrast, aluminium is obtained from the oxide and calcium from the carbonate. Explain these observations in terms of hardness. [4]
- (e) Which of the following reactions A-F are oxidative additions? Justify your answers. [6]

PERIODIC TABLE OF ELEMENTS

7	6	U	4	3	2)	PERIODS	•
223 Fr 87	132.91 Cs 55	85.468 Rb 37	39.098 K 19	22.990 Na 11	6.941 Li 3	1.008 H 1	IA	
226.03 R.a 88	137.33 Ba 56	87.62 Sr 38	40.078 Ca 20	24.305 Mg 12	9.012 Be 4		ΠA	2
(227) ** Ac 89	138.91 *La 57	88.906 Y 39	44.956 Sc 21				EIII	ω
(261) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22				IVB	4
(262) Ha 105	180.95 Ta 73	92.906 Nb 41	50.942 V 23		;		VB	5
(263) Un.h 106	183.85 W 74	95.94 Mo 42	51.996 Cr 24	TRAN		:	VIB	6
(262) Uns 107	186.21 Re 75	98.907 Tc 43	54.938 Min 25	TRANSITION ELEMENTS			VIIB	7
(265) Uno 108	190.2 Os 76	101.07 Ru 44	55.847 Fe 26	ELEM				~ % G
(266) Une 109	192.22 L r 77	102.91 Rh 45	58.933 Co 27	ENTS			VIIIB	GROUPS
(267) Uun 110	195.08 Pt 78	106,42 Pd 46	58.69 Ni 28					10
	196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atomic mass Symbol Atomic No.		IB	
:	200.59 Hg 80	112.41 Cd 48	65.39 Zn 30		c mass - 1bol - ic No		EEE	12
-	204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	¥10.811 B 5		ШA	13
	207.2 Pb 82	118.71 Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C 6		IVA	14
	208.98 Bi 83	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 N 7		VA	15
	(209) Po 84	127.60 Te 52	78.96 Se 34	32.06 S 16	15.999 O 8		VIA	16
	(210) At 85	126.90 I 53	79.904 Br 35	35.453 Cl 17	18.998 F 9		VIIA	17
	(222) Rn 86	131.29 Xe , 54	83.80 Kr 36	39.948 Ar 18	20.180 Ne 10	4.003 He 2	VIIIA	1.8
		,		N M				-

*Lantha

**Actin

	ſ			-life.	est half	the long	ope with	f the isot	umber oj	mass n	() indicates the mass number of the isotope with the longest half-life	() indi		
103	102	101	100	99	98	97	96	95	94	93	92	91	90	
Lr	N _o	Md	Fm	Es	Ω	Bk	Cm	Am	Pu	Np	ď	Рa	Th	
(260)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	237.05	238.03	231.04	232.04	inide Series
71		69	68	67	66	65	64	63	62	61	60.	59	58	-
Lu	Yb	Tm	Ē	Щ0	Dy	Ţ,	ନୁ	Eu	Sm	Pm	M	Pr	. G	anide Series
174.97	173.04	168.93	167.26	164.93	162,50	158.93	157.25	151.96	150.36	(145)	144.24	140.91	140.12	