UNIVERSITY OF ESWATINI ### **MAIN EXAMINATION** ### **ACADEMIC YEAR 2018/2019** TITLE OF PAPER: ADVANCED INORGANIC CHEMISTRY **COURSE NUMBER:** C401 TIME ALLOWED: THREE (3) HOURS **INSTRUCTIONS:** THERE ARE <u>SIX (6)</u> QUESTIONS. ANSWER <u>ANY FOUR (4)</u> QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER. PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. # QUESTION ONE | (a) | Determine the <u>oxidation state</u> of the metal, its <u>dⁿ total electron count</u> , and the <u>number of electrons</u> in each of the following compounds. Which of the compounds will be stable? (i) Ir(H)(CO)(dppe) ₂ (comment: dppe is bidentate) (ii) [Mo(H)(CO) ₂ (dppe) ₂] ⁺ (comment: dppe is bidentate) | total
these | |-----|---|----------------| | | Cp₃NbMe₂ (comment: one Cp is η¹) Rh(O₂CCH₃)₂ (comment: dimer with Rh-Rh bond) | l | | (b) | Sketch interactions of 1,3-butadiene, (CH ₂ =CH-CH=CH ₂) with a metal atom η^2 (ii) η^4 [4] | | | (c) | Suggest products in the following reactions, and give likely structures for products: (i) Fe(CO) ₅ irradiated with C ₂ H ₄ (ii) Re ₂ (CO) ₁₀ with Na/Hg (iii) Na[Mn(CO) ₅] with ONCI (iv) Ni(CO) ₄ with PPh ₃ [8] | | | (d) | $H_2Os_3(CO)_{10}$ catalyses the isomerization of alkenes:
$RCH_2CH=CH_2 \rightarrow E\text{-RCH}=CHMe + Z\text{-RCH}=CHMe$
By determining the cluster valence electron count for $H_2Os_3(CO)_{10}$ deduce makes this cluster an effective catalyst. [5] | | | QUE | TION TWO | | | (a) | Use Wade's rules to suggest likely structures for (i) B_5H_9 (ii) $[B_8H_8]^{2-}$ (iii) $[Os_8(CO)_{22}]^{2-}$ [9] |] | | (b) | Pick out pairs of isoelectronic species from the following list:
HF, [NO ₂] ⁺ , NH ₃ , [H ₃ O] ⁺ , [OH] ⁻ , CO ₂ [3] |] | | (c) | Propose two syntheses for MeMn(CO) ₅ both starting with Mn ₂ (CO) ₁₀ , with using Na and one using Br_2 . You may use other reagents of your choice. [8] | | | (d) | Which Ln ³⁺ ion would you expect to show the same colour as (i) Tb ³⁺ (ii) Tm ³⁺ (iii) Sm ³⁺ [3] Justify your answers. | | # **QUESTION THREE** - (a) (i) Assign the <u>oxidation state</u> of M in $(\eta^4-C_8H_8)M(CO)_3$]. Assuming the 18-electron rule applies, <u>identify</u> the <u>second</u> row transition metal, M. - (ii) What charge, z, would be necessary for [(η⁵-C₆H₇)Fe(CO)₃]² to obey the 18-electron rule? [3] - (b) (i) Give a definition of a metal cluster. - (ii) What are the two broad classes of metal carbonyl clusters? - (iii) $M_3(CO)_{12}$ clusters (M = Ru and Os) are unreactive. Give three ways by which they can be converted into more reactive derivatives. [8] - (c) There is *one oxidative addition* reaction and *one reductive elimination* reaction in the figure below. Give <u>balanced chemical equations</u> for them (both) and assign <u>oxidation numbers</u> to all the rhodium complexes in the equations. [6] The main catalytic cycle in the homogeneous hydrogenation of alkene by rhodium-phosphine complexes, $L = PPh_3$. (d) Propose the main steps in the catalytic cycle for the conversion of pent-1-ene to hexanal using HRh(CO)₄ as the catalyst precursor. [8] # **QUESTION FOUR** - (a) Using the concept of isolobality, give (i) the *hydrogen-nitrogen* molecule or molecular fragment that is isolobal with CH₃. - (ii) the *hydrogen-boron* molecule or molecular fragment that is isolobal with the O atom. - (iii) a nitrogen-containing species that is isolobal with [Mn(CO)₅]⁻. [3] - (b) [Mn₂(CO)₁₀] contains a metal-metal bond. Its "formal oxidation state" is zero because M-M bonds "do not count" in the calculation of oxidation state. - (i) What is the formal oxidation state of octahedral [Mn(CO)₅Me]? - (ii) What oxidation state do you think best describes [Mn₂(CO)₁₀]? [4] - (c) (i) Predict whether the equilibrium constants for the following reactions should be greater than 1 (reaction lies to the right) or less than 1 (reaction lies to the left): - (1) $CdI_2 + CaF_2 CdF_2 + CaI_2$ - (2) $[CuI_4]^{2-} + [CuCI_4]^{3-} \leftrightarrows [CuCI_4]^{2-} + [CuI_4]^{3-}$ - (ii) Account for the trend in acidity: $[Fe(OH_2)_6]^{2^+} < [Fe(OH_2)_6]^{3^+}$ [7] - (d) (i) Give the <u>electron count</u> for the metal centre in Ir(CO)(NO)(PPh₃)₂. - (ii) Draw the structures of three complexes $(cyclo-C_5H_5)Rd(CO)_n$ (n = 2, 3, 4) assuming that the complexes obey the 18-electron rule. [7] - (e) For the metallocene complex $[(\eta^5-C_5H_5)_2TiCl_2]$: - (i) Calculate the number of valence electrons for the complex. - (ii) Calculate the formal oxidation state for the titanium (Ti) atom. - (iii) Show that the complex could be regarded as having a coordination number of 4 or 12. [4] ### **QUESTION FIVE** Identify isotopes A - F in the following sequence of nuclear reactions: (e) (a) (i) $${}^{238}U \xrightarrow{(n, \gamma)} A \xrightarrow{-\beta^-} B \xrightarrow{-\beta^-} C$$ (ii) $$\mathbf{p} \xrightarrow{-\beta^{-}} \mathbf{E} \xrightarrow{(\mathbf{n}, \gamma)} {}^{242}\mathbf{Am} \xrightarrow{-\beta^{-}} \mathbf{F}$$ [6] - Metal-Metal bonding in multinuclear species is not always clear-cut. Solely on (b) the basis of the 18-electron rule, suggest whether $(\eta^5-C_5H_5)Ni(\mu-PPh_2)_2Ni(\mu-PPh_2)_2Ni(\mu-PPh_$ C_5H_5) might be expected to contain a metal-metal bond. [3] - Suggest what change in cluster structure might accompany the reaction: (c) [6] $[Co_6(CO)_{15}N]^- \rightarrow [Co_6(CO)_{13}N]^- + 2CO$ - Confirm that H₂Os₃(CO)₁₁ has sufficient valence electrons to adopt a (i) (d) triangular metal framework.. - Do the modes of bonding of the CO and H ligands in (d)(i) above affect (ii) the total valence electron count? - Comment on the fact that H₂Os₃(CO)₁₀ also has a triangular Os₃-core. [5] (iii) - Considering the bonding in metal carbonyls, what factors would affect the (e) (i) C-O stretching vibrations? - A carbonyl complex has linear OC-M-CO group. How will the CO (ii) stretching frequency change (increase, decrease or remain the same) when one CO is replaced by triethylamine, (CH₃CH₂)₃N:? Justify your answer. [5] [4] ### **OUESTION SIX** - Suggest products for the following reactions. (a) - $ClF + BF_3 \rightarrow$ - $CsF + IF_5 \rightarrow$ (ii) - $SbF_5 + ClF_5 \rightarrow$ (iii) - $Me_4NF + IF_7 \rightarrow$ (iv) - Predict the structures of (b) $[BrF_2]^+$ [9] BrICl-(ii) (iii) [ICl₄] (i) - Identify the starting isotopes A and B in each of the following syntheses of (c) transactinoid elements: - (i) - A + ${}^{4}_{2}\text{He} \rightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$ B + ${}^{16}_{8}\text{O} \rightarrow {}^{255}_{102}\text{No} + 5({}^{1}_{0}\text{n})$ [2] - (d) The common ores of nickel and copper are sulphides. By contrast, aluminium is obtained from the oxide and calcium from the carbonate. Explain these observations in terms of hardness. [4] - (e) Which of the following reactions A-F are oxidative additions? Justify your answers. [6] # PERIODIC TABLE OF ELEMENTS | 7 | 6 | U | 4 | 3 | 2 |) | PERIODS | • | |-----------------------------|----------------------------|-----------------------------|----------------------------|---------------------------|-------------------------------|-------------------------|---------|-------------| | 223
Fr
87 | 132.91
Cs
55 | 85.468
Rb
37 | 39.098
K
19 | 22.990
Na
11 | 6.941
Li
3 | 1.008
H
1 | IA | | | 226.03
R.a
88 | 137.33
Ba
56 | 87.62
Sr
38 | 40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be
4 | | ΠA | 2 | | (227)
** Ac
89 | 138.91
*La
57 | 88.906
Y
39 | 44.956
Sc
21 | | | | EIII | ω | | (261)
Rf
104 | 178.49
Hf
72 | 91.224
Zr
40 | 47.88
Ti
22 | | | | IVB | 4 | | (262)
Ha
105 | 180.95
Ta
73 | 92.906
Nb
41 | 50.942
V
23 | | ; | | VB | 5 | | (263)
Un.h
106 | 183.85
W
74 | 95.94
Mo
42 | 51.996
Cr
24 | TRAN | | : | VIB | 6 | | (262)
Uns
107 | 186.21
Re
75 | 98.907
Tc
43 | 54.938
Min
25 | TRANSITION ELEMENTS | | | VIIB | 7 | | (265)
Uno
108 | 190.2
Os
76 | 101.07
Ru
44 | 55.847
Fe
26 | ELEM | | | | ~
%
G | | (266)
Une
109 | 192.22
L r
77 | 102.91
Rh
45 | 58.933
Co
27 | ENTS | | | VIIIB | GROUPS | | (267)
Uun
110 | 195.08
Pt
78 | 106,42
Pd
46 | 58.69
Ni
28 | | | | | 10 | | | 196.97
Au
79 | 107.87
Ag
47 | 63.546
Cu
29 | | Atomic mass Symbol Atomic No. | | IB | | | : | 200.59
Hg
80 | 112.41
Cd
48 | 65.39
Zn
30 | | c mass -
1bol -
ic No | | EEE | 12 | | - | 204.38
T1
81 | 114.82
In
49 | 69.723
Ga
31 | 26.982
Al
13 | ¥10.811
B 5 | | ШA | 13 | | | 207.2
Pb
82 | 118.71
Sn
50 | 72.61
Ge
32 | 28.086
Si
14 | 12.011
C
6 | | IVA | 14 | | | 208.98
Bi
83 | 121.75
Sb
51 | 74.922
As
33 | 30.974
P
15 | 14.007
N
7 | | VA | 15 | | | (209)
Po
84 | 127.60
Te
52 | 78.96
Se
34 | 32.06
S
16 | 15.999
O
8 | | VIA | 16 | | | (210)
At
85 | 126.90
I
53 | 79.904
Br
35 | 35.453
Cl
17 | 18.998
F
9 | | VIIA | 17 | | | (222)
Rn
86 | 131.29
Xe ,
54 | 83.80
Kr
36 | 39.948
Ar
18 | 20.180
Ne
10 | 4.003
He
2 | VIIIA | 1.8 | | | | , | | N M | | | | - | *Lantha **Actin | | ſ | | | -life. | est half | the long | ope with | f the isot | umber oj | mass n | () indicates the mass number of the isotope with the longest half-life | () indi | | | |--------|----------------|--------|--------|--------|----------|----------|----------|------------|----------|--------|--|---------|------------|--------------| | 103 | 102 | 101 | 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | | | Lr | N _o | Md | Fm | Es | Ω | Bk | Cm | Am | Pu | Np | ď | Рa | Th | | | (260) | (259) | (258) | (257) | (252) | (251) | (247) | (247) | (243) | (244) | 237.05 | 238.03 | 231.04 | 232.04 | inide Series | | 71 | | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 60. | 59 | 58 | - | | Lu | Yb | Tm | Ē | Щ0 | Dy | Ţ, | ନୁ | Eu | Sm | Pm | M | Pr | . G | anide Series | | 174.97 | 173.04 | 168.93 | 167.26 | 164.93 | 162,50 | 158.93 | 157.25 | 151.96 | 150.36 | (145) | 144.24 | 140.91 | 140.12 | |