UNIVERSITY OF ESWATINI

DEPARTMENT OF CHEMISTRY

NOVEMBER 2018 MAIN EXAMINATION

TITLE OF THE PAPER: SPECTRO-ANALYTICAL AND SEPARATION

METHODS

COURSE CODE

C304/ CHE 312

TIME

3 HOURS

Important Information:

1. Each question is worth 25 marks.

2. Answer any Four (4) questions in this paper.

3. Marks for ALL the procedural calculations will be

awarded.

4. Start each question on a fresh page of the answer

sheet.

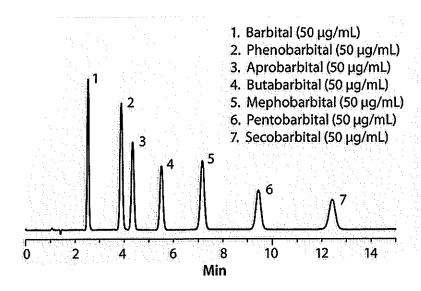
5. Diagrams must be large and clearly labelled

accordingly.

6. This paper contains an appendix for chemical

constant.

You are not supposed to open this paper until permission has been granted by the chief invigilator.


QUESTION ONE [25 MARKS]

a)	Draw a well labelled diagram of a sinusoidal wave	(4)
b)	What is the wavelength of a photon that has three times as much	
	energy as that of a photon whose wavelength is 500 nm?	(6)
c)	What region of the electromagnetic spectrum would be associated	
	with these photons?	(2)
d)	Absorbing groups or species are classified based on three types of	
	transitions. List these types of electronic transitions.	(3)
e)	With the aid of the Jabloski diagram, discuss the various radioactive	
	and non-radiative processes that take place during fluorescence and	
	phosphorescence	(6)
f)	Explain in details why phosphorescence takes longer than	
	fluorescence	(4)
	QUESTION TWO [25 MARKS]	
(a)	A solution containing only the thiourea complex of bismuth(III) has a	
	molar absorptivity of $9.35 \times 10^3 \text{ L.cm}^{-1} \text{mol}^{-1}$ at 470 nm.	
	(i) What will be the absorbance of a 2.52×10^{-5} mol.L ⁻¹ solution of	
	the complex when measured in a 12.5 mm cell?	(3)
	(ii) What will be the percentage transmittance of the solution	
	described in (i) above?	(3)
(b)	State the Beer's law as applied in spectroscopy and explain all the	
	terms appearing in it.	(3)

(c)	Deviations from Beer's law are classified into three categories. List	
	these three categories, giving a detailed explanation and examples of	
	each.	(6)
(d)	Discuss what bathochromic and hypsochromic shifts are in the UV-	
	Visible spectrophotometry. What causes these shifts?	(4)
(e)	List two (2) differences between atomic and molecular absorption?	(2)
(f)	(i) What are the necessary conditions for a vibrating bond to be IR active?	(2)
(ii)	One of the major disadvantages of dispersive Infrared instruments is	
	slow scanning of the spectrum. Describe how this challenge is	
	overcome in Fourier Transform Infra-red (FT-IR) instruments.	(2)
	QUESTION THREE [25 MARKS]	
(a)	(i) Explain what you understand by a background in atomic spectroscopy	
	measurements	(1)
	(ii) Explain the different background correction methods used in atomic	
	spectroscopy.	(6)
	(iii) Explain three sources of interferences, giving examples of each	
	and how this problem is solved in Flame atomic absorption	
	spectroscopy (FAAS)	(7)
(b)	Explain the operation of a photomultiplier tube (PMT). What are the	
	advantages of this detector over the phototube?	(6)
(c)	The hollow cathode lamp (HCL) is a line source in Atomic	
	spectrophotometer Explain what you understand by the term line	

	sourc	ce? Explain now a HCL works, including why a different lamp	
	must	be used for each element.	(5)
	<u>QUE</u>	STION FOUR [25 MARKS]	
(a)	What	t are the differences between atomic and molecular spectroscopy?	(3)
(b)	Brief	ly describe the sequence of all events that will take place as soon	
	as a	sample solution is transported into the flame of an atomic	
	absor	rption spectrophotometer (FAAS).	(4)
(c)	Ident	ify the physical changes involved in the furnace program and	
	descr	ribe the processes that takes place during each stage	(3)
(d)	Outli	ne three (3) advantages of graphite furnace atomic absorption	
	(GF-	AAS) over FAAS	(3)
(e)	Expla	ain what you understand by matrix modification in GFAAS and	
	give	examples of how this is achieved	(4)
(f)	In the	analysis of ground water sample by AAS for Na the presence of	
	high a	mount of Calcium (Ca) give rise to molecular interference due to	
	the pre	esence of a broad molecular band of CaOH and Co.	
	(i)	Why would swapping to a nitrous oxide flame resolve this	
		problem?	(2)
	(ii)	When they swapped to N ₂ O/C ₂ H ₂ flame, they added a large	
		amount of potassium (K). Why did they do this? Explain this	
		principle	(3)
	(iii)	In another analysis of Na, Lanthanum was added to the	
		samples and standards. Explain why it was necessary to	
		Lanthanum to the standards and the samples.	(1)

	(iv)	If we	swapped to an inductively coupled plasma m	ass
		spectro	ometer (ICP-MS), would there be a problem due to	the
		presen	ce of Ca? Explain	(2)
QUE S	STION 5	5 [25 MA	ARKS]	
a.	Define	the follo	wing terms as used in chromatography;	(3)
		i.	Resolution	
		ii.	Plate height	
		iii.	Elution	
b.	Explai	the fact	ors that lead to band broadening in gas chromatograp	ohy
	(GC)			(3)
c.	List th	ree (3) fe	eatures of a good carrier gas for GC. List any three	(3)
	commo	only used	carrier gases in GC.	(5)
d.	Differe	ntiate be	tween gradient elution and Isocratic elution as used	. in
	Liquid	chromate	ography (LC)	(2)
e.	Given	the HPL	C chromatogram below for a mixture of barbiturat	es;
	assumi	ng that b	arbital is more polar than phenobarbital which is m	ore
	polar tl	nan Apro	barbital, etc. Was this experiment run under normal	or
	reverse	phase co	onditions? Explain	(4)

- f. Derivatization is the process of chemically modifying a compound to produce a new compound which has properties that are suitable for analysis using GC.
 - (i) Explain three (3) scenarios which would require the sample be derivatized before being analyzed using GC. (3)
 - (ii) Give three types of derivatization method and for each method,
 explain how derivatization is carried out. (5)

PHYSICAL CONSTANTS AND UNITS

	Table 1: G	eneral Physical Constants	
Constant	Symbol	SI Units	Non-SI Units
Velocity of Light	с	$2.9979 \times 10^8 \mathrm{m s^{-1}}$	
Electronic charge	е	-1.6022×10^{-19} C	
Avogadro's constant	N _A	$6.0220 \times 10^{23} \text{ mol}^{-1}$	
Atomic mass unit	u	$1.6606 \times 10^{-27} \text{ kg}$	
Electron rest mass	m _e	9.1095 × 10 ⁻³¹ kg	
Proton rest mass	m _p	$1.6726 \times 10^{-27} \text{ kg}$	
Neutron rest mass	im _n	1.6750 × 10 ⁻²⁷ kg	
Planck's constant	h	$6.6262 \times 10^{-34} \mathrm{J}\mathrm{s}$	
Rydberg constant	R _H	1.0974 × 10 ⁷ m ⁻¹	
Ideal gas constant	R	8.314 J mol ⁻¹ K ⁻¹	0.08206 atm mol ⁻¹ K ⁻¹
Gas molar volume (STP)	V _o	$2.21414 \times 10^{-2} \mathrm{m}^3 \mathrm{mol}^{-1}$	22.4 l mol ⁻¹
Boltzmann constant	k .	$1.3807 \times 10^{-23} \text{ J K}^{-1}$	
Faraday constant	F	96485 C mol ⁻¹	
Gravitational acceleration	g	9.80 m s ⁻²	
Permittivity of a vacuum	ε_{o}	8.8542 × 10 ⁻¹² F m ⁻¹	
Mechanical equivalent of heat		1 calorie ≡ 4.18 J	

ENERGY 15 = 6.242 × 1018 eV