UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2017/2018

TITLE OF PAPER:

THEORY OF SPECTROSCOPY

COURSE NUMBER:

CHE342

TIME:

THREE (3) HOURS

INSTRUCTIONS:

This paper consists of five (5) questions in 3 pages. **Answer any four (4) questions NB**: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 [25 MARKS]

a)	Calculate the frequency in wavenumbers of the line in the spectrum of a	Li ²⁺ ic	on
	that is emitted when the ion makes a transition from the stationary state	n=2	to
	the ground state	[4]	

b) State whether the following transitions are allowed or forbidden. Give reasons for your answers.

i. 3d←2s and 3p←1s [3]

ii. $^{1}D\leftarrow^{1}S$ and $^{3}P_{1}\leftarrow^{3}P_{0}$ [3]

c) the term symbol for particular states of different atoms are quoted as follows:

i. ⁴S₁

ii. $^{2}D_{7/2}$

iii. ${}^{0}P_{1}$

Explain why these are wrong

[9]

d) Give term symbols for the following

i. The lithium in its first excited state: $1s^22p^1$ [3]

ii. Ground state scandium:[Ar]3d¹4s² [3]

QUESTION 2 [25MARKS]

a) The fundamental and first overtone transitions of ¹⁴N¹⁶O are centered at 1876.06 and 3724.20 /cm, respectively. The atomic masses for ¹⁴N and ¹⁶O are 14.0031 u and 15.9949 u, respectively. Calculate

i. The equilibrium vibrational frequency [3]

ii. The anhamornicity constant [3]

iii. The exact zero point energy in kJ/mol [3]

iv. The force constant of the molecule [3]

b) Compare the species O_2^+ , O_2 and $O_2^{2^-}$ in terms of the ground state configuration, bond order, stability, bond length and magnetic properties [13]

QUESTION 3 [25MARKS]

- a) Give the gross and specific selection rules for pure rotational spectroscopy[4]
- b) Which of the following molecules show pure rotational spectra? Explain your choices

i. H₂, HCl, CH₃Cl, CH₂Cl₂, H₂O, NH₃ [6]

c) The average spacing between adjacent lines in the rotational spectra of ${}^{1}H^{19}F$ is 41.912 /cm. Calculate the bond length of the HF molecule. [given that the atomic masses are ${}^{1}H = 1.0078$ u and ${}^{19}F = 18.9984$ u]

d)	Assuming the bond length is independent of isotopic substitution; calculate the spacing between adjacent lines in the rotational spectra of ${}^{2}H^{19}F$. Atomic mass ${}^{2}H = 2.0140 \text{ u}$ [7]
QUES	STION 4 [25MARKS]
	Write down the rotational energy levels of a diatomic molecule assumed to be rigid [3] What is degeneracy? What is the physical interpretation of this degeneracy
	Obtain a general expression for the change in energy of the R-branch in HCl in the lowest vibrational state [4] The highest temperature microwave spectrum of 39 K 35 Cl vapor shows an absorption at 7687.94 MHz that can be identified with the J=0 to J=1 transition. Calculate the moment of inertia and the bond length of KCl. [Atomic masses are 39 K =38.9637 u and 35 Cl =3409688 u] [15]
QUES	STION 5 [25 MARKS]
a)	Give the number of vibrational modes of the following $ \begin{array}{ll} \text{i.} & SO_2 \\ \text{ii.} & C_2F_2 \end{array} $
b)	iii. CCI ₄ [3] Sketch and name the vibrational modes of SO ₂ . Indicate which are IR and which are Raman active [6]
c)	Explain how you can use infrared and Raman spectroscopy to determine the structure of a triatomic AB ₂ molecule [6]
d) e)	State the selection rules for rotational Raman spectroscopy [2] The pure rotational Raman spectrum of ¹⁴ N ₂ shows a spacing 7.99 /cm between adjacent rotational lines. i. Find the value of the rotational constant B [2]
	ii. What is the spacing between the unshifted line v_{ex} and pure rotational lines closest to v_{ex} [2]
	iii. If 540.8 nm radiation from an Argon laser is used as the exciting radiation, find the wavelengths of the two pure rotational Raman lines nearest the unshifted lines.
Total	Marks /100/

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	.8	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{\lambda}e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{\lambda}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_{\star}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u·,	1.660 54 X 10 ⁻¹⁷ Kg
Mass		<u>.</u>
electron	-	9.109 39 X 10 ⁻³¹ Kg
proton	m ^b	1.672 62 X 10 ⁻²⁷ Kg
neutron	III _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm b} = 1/c^2 \mu_{\rm b}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
T. T	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{n}	$4\pi \times 10^{-7} \text{ J s}^{2} \text{ C}^{-2} \text{ m}^{-1}$
Note and the second		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton	to In	D 054 00 754 024 7 mg
Bohr	$\mu_{\rm B} = e \hbar / 2 m_{\rm c}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm M} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge .	2.002 32
Bohr radius	$a_v = 4\pi \epsilon_v \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant		7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}e^{4}/8h^{3}cs_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	,	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =				l erg l eV/n		e e		1 X 10 96 48	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		
Prefixes	femto	pico.	nano	micro	milli	centi	deci	kilo	M mega 10°	G giga 10°	

PERIODIC TABLE OF ELEMENTS

GROUPS

		T	1	T		T	T	T	7				Υ	7	T	1	1	1
].	- 2	.3_	4	5	. 6	7	8	: 9	10	11	12	13	14	15	16	17	18
PERIODS	!Λ	IIA.	IIIB	IVB	VB	VIB	VIIB		VIIIB		18	IIB	IIIA	IVA	VA	AIA	VIIA	VIIIA
	800,1							•	•									4,003
1	11								a.					•.,			¥	He
	. 1 -		••.										* .					2
	6.941	9.012	1								Atom	ic mass —	10.811	12.011	14,007	15.999	18.998	20.180
2	Li	Be									Syr	nbol `—	B	C	N	0	F	-Ne
	. 3.	4,							*			ic No. —	5	6	. 7	8	9	10
1	22.990	24,305						•				4	26.982	28.086	30.974	32.06	35.453	39.948
3 .	Na:	Mg				TRAN	SITION	ELEM	ENTS				Al	Si ·	P	S	Ci	Ar
	11.	12				,						•	. 13	14	15	16	17	18
	39.098	40.078	-44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74,922	78.96	79.904	83.80
4	Ιζ	Ca	Sc	Ti	Y	Cr	Mn ·	Fc	Co	Ni	Cu	Zn	. Ga	Ge	As	Sc	Br	Kr
	19	20	21	22	23	24	2.5	26	. 27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101107	102.91	106,42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	NЬ	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- Ini	Sn	Sb	Te	I	Xe.
<u> </u>	37	<u> 38</u>	39	40	41	- 42	43	44	45	46	47	48 .	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*Ln	Hf	Ta	W	Re.	Os	Ir i	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	. 75	76	77	78	.79	80 `	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	Ir	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		٠,						
	87	88	89	104	105	106	107.	108	109	110					x .			

*Lanthanide Series

**'Actinide Series

140.12	140.91	144,24	(145)	150,36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	·67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa '	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md ⁻	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	,103

⁽⁾ indicates the mass number of the isotope with the langest half-life.