UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2016

TITLE OF PAPER : ENVIRONMENTAL CHEMISTRY

COURSE NUMBER : CHE 612/ERM 640

TIME ALLOWED

3 HRS

INSTRUCTIONS

THIS EXAMINATION HAS SIX (6)

QUESTIONS

ANSWER ANY FOUR QUESTIONS

EACH QUESTION HAS 25 MARKS

THIS EXAMINATION HAS A TOTAL

OF 100 MARKS

DATA SHEETS ARE PROVIDED

WITH THIS EXAMINATION PAPER

DO NO TOPEN THIS PAPER UNTIL THE CHIEF INVIGILATOR INSTRUCTS YOU TO DO SO

Question 1 (25 Marks)

a) Using diagrams, examples and or equations write short notes on the Octanol / water partition coefficient, K_{ow}, as applied in environmental chemistry.

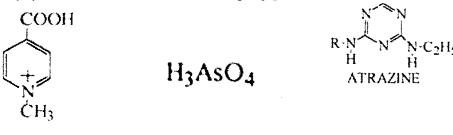
In each highlight the environmental relevance, methods of determination and where applicable give methods of estimation using Quality Structure Activity Relationships (QSAR's)

b) A model environmental has 6 major phases; air, water, soil, sediments, suspended solids and biota. It has an area of 1 km² and an atmosphere of 10 km high. Soil to depth of 3 cm covers 30% of the surface, while the rest is covered with water to an average depth of 10m. Water has a 3-cm layer of sediment, contains 5 ml of suspended solids per cubic meter, and 0,5mlm⁻³ of biota. All phases are homogeneous. 100 moles. Pp-DDT is discharged from a factory to this environment until steady concentrations in each phase are reached at 25°C.

pp-DDT has the following characteristics at 25° C. K_{sorb} (soil, 2% organic carbon) 1,700 K_{sorb} (sediment, suspend solids, 4% organic carbon) 25,400 K_{B} (fish, 5% lipid) 77,400 K_{OW} 1,,555,000 H 2.3 mole⁻¹ m³ Pa

- i) Determine Henry's constant, Z values for water, soil, fish and sediment, and suspended solids, respectively. [5]
- ii) Establish the overall distribution of the pollutant in this environment using the fugacity concept. [3]
- iii) In which phase is DDT dominant, explain. [2]

Question 2 (25 Marks)


- a) Using any of the pollutants and sorbents given below, write short notes on any two of the following mechanisms of Soil Sorption as an environmental fate property.
 - (i). Ligand exchange

[5]

(ii). Surface complexation

[5]

(iii). Protonation and Ion exchange [5]

PARAQUAT

b) Using thermodynamic assumptions derive the Freundlich adsorption equation.

$$\Gamma = KC_{eq}^{N}$$

c) The sorption of phenol on a slit loam yielded the following results:

Equilibrium Concentration mg/1	Toluene
•	Sorbed (μg/g)
0.08	12
0.20	33
0.32	49
0.40	67
0.53	83

- i) Verify whether or not this sorption follows a one site Langmuir or the Freundlich Sorption Isotherm. [3]
- ii) Determine the appropriate constants and comment on their magnitude.

[3]

iii) Given that the solubility and vapour pressure for toluene is 67000 mM L⁻¹ and 0.2 mm Hg, respectively, using mobility and retardation values determine whether or not it poses any risk for ground water contamination if the soil bulk density is 1.7, porosity is 0.25 and fractional organic carbon is 0.2%. [5]

Useful relations:

$$\Gamma = KC_{eq}^{N}$$

$$\Gamma = \frac{\Gamma_{\infty}KC_{equil.}}{1 + KC_{equil.}} MI = log \left[\frac{S_{equil.}}{K_{equil.}}\right]$$

ISOTHERM	RETARDATION FACTOR						
LINEAR $T = K_{J}C$	$R_c = I + \frac{\rho_k}{\eta} K_d$						
FREUNDLICH $\frac{X}{m} = K_d C_e^{-I} n$	$R_{\tau} \neq I + \frac{\rho_{s}NK_{d}C^{N/T}}{\eta}$						
LANGMUIR $\Gamma = \frac{\Gamma_i K C_{ig}}{I + \Gamma_i C_{ig}}$	$R_{+} = I + \frac{\rho_{8}}{\eta} \left(\frac{K_{J} \Gamma_{+}}{(I + K_{J} C)^{2}} \right)$						

Question 3 [25 Marks]

- a) Using short notes compare and contrast advection and dispersion as forms of pollutant transport in aquatic environments. [15]
- b) A truck which is carrying water containing 1275 mg/L benzene overturns and spills a volume of water sufficient to saturate a thin acquifer over an area 5 m². The acquifer conatins ground flowing with an average linear velocity of 0.45 m/day. Assume that DL and DT are 2.1 m²/day and 0.21 m²/day repsectively.

There is a nearby private well at a seasonal cottage. If the center of the spill is located at Xo=0 and Yo=0, then the location of the well is x=72 m and y=5.5 m. The owners of the Private well are away for the season and will not return for another 200 days. If there is no degradation or retardation of benzene as it moves through the acquifer, what will the concentration of benzene be in the well when the owners return? [10] Useful relation.

$$C = \frac{C_0 A}{2(\sqrt{\pi})^2 (2D_x t)(2D_y t)^{1/2}} exp \left[-\frac{I}{2} \left[\frac{(x - x_0 - u_x t)^2}{2D_x t} + \frac{(y - y_0 - u_y t)^2}{2D_y t} \right] \right]$$

Question 4 [25 Marks]

- a) Using an example of your choice define the term "risk".
- b) You are an environmental consultant and have been asked to conduct a risk assessment on a site on the outskirts of a city selected for domestic housing development. Outline diagrammatically the steps you would take in this evaluation.[15]

[5]

c) Daily intake values and reference dose for Cu, Zn, Cd, inorganic arsenic and organic Hg from oysters are as follows:

Cu	40	373	909
Zn	300	531	129.3
Cd	0.5	0.340	0.832
As	0.3	0.484	11.8
Hg	0.1	0.056	0.178

Evaluate the risk associated with these elements at a maximum daily oyster intake of 139 g/day for an adult weight of 65 kg and comment on your results. [5]

Useful relation:

$$HQ = \frac{EFr \times ED_{tot} \times SFI \times MCS}{RFDo \times BWa \times ATn}$$

Where:

Efr: Exposure frequency (350 day/yr) EDtot: exposure duration (30 yrs) SFI: sea food ingestion g/day

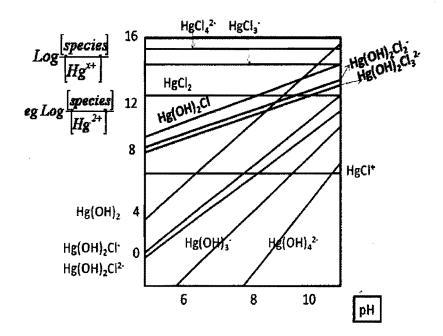
RFDo: Reference dose, oral (mg/kg/day) (TDI) MCS: metal concentration in edible portion of food

ATn: average time (30 yrs)

BW: Body weight.

Question 5 [25 Marks]

- a) With the aid of diagrams, examples and appropriate reaction equations, write short notes on the following terms [10]
 - i) Chemical speciation
 - ii) Sediment stratification
- b) Given the following equilibrium equations for carbon dioxide in water, using charge balance calculate the fraction dissociated at pH 6.8 for the following species:
 - i) H₂CO₃
- [2]


ii) HCO₃

[2] [2]

$$H_2CO_3 \longrightarrow H^+ + HCO_3^- \log_{10} K_1 = -6.4$$

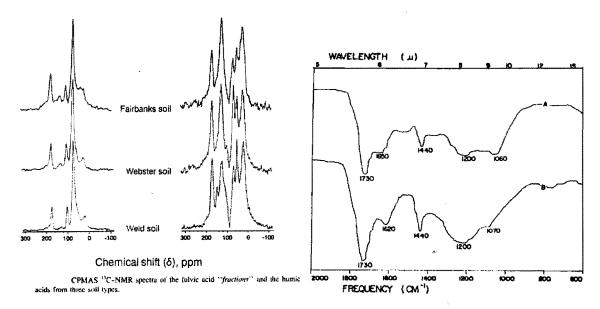
$$HCO_3^- \longrightarrow H^+ + CO_3^{2-} \log_{10} K_2 = -10.3$$

c) The diagram and equilibria given below illustrate some oxidation/reduction chemistry of mercury.

Chlorination complexes

5.
$$Hg^++2H_2O \rightleftharpoons Hg(OH)_2+2H^+ Log K=-6$$

Using equation 4 and 5 show the equilibrium lines represented by


i)
$$Log \frac{\left| Hg(OH)_2 \right|}{\left| Hg^+ \right|}$$
 [2]

iii)
$$Log \left[\frac{HgCl_4^{2-}}{Hg^{2+}} \right]$$
 [2]

iv) Using the speciation diagram for mercury discuss the aqueous chemistry of mercury in surface water systems. [5]

Question 6 [25 Marks]

a) With the aid of the ¹²C-NMR and infra-red spectra below and any other pertinent facts compare and contrast humic and fulvic acids. [15]

In your discussion include genesis reactions, chemical and physical properties, separation (extraction) techniques and any other important similarities/differences.

b) Using examples explain the role of humic/fulvic acids in pollutants transport.

[10]

In your analysis include the role of functional groups, complexation, binding capacity and its role in oxidation reduction reactions in the aquatic environment.

Useful Relations				General Data					
(RT) _{298-15K} =2.4789 l	kJ/mol			speed of light	C	2.997 925x10 ⁸ ms ⁻¹			
$(RT/F)_{298\cdot15K}=0.025$	693 V			charge of proton	е	1.602 19x10 ⁻¹⁹ C			
		.15 1000.15	22233244-1-16-17-22224-1-10-17-12-27-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹			
T/Cm ⁻¹ : 69.61 2		7.62 695.13		Boltzmann constant	n constant k 1.380 66x10 ⁻²³				
1mmHg=133.222 N	m ⁻²			Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹			
hc/k=1.438 78x10 ⁻²	m K		//At-AMBMME to accorde in a source resemble thinks a viring	MIGRICIA PRINTING V VIIVA AND INC. AND	propries and annual libertal transmission of the state of	8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹			
1atm	1 cal	1 eV	1cm ⁻¹	MERCHANIS SECTION AND ANALYSIS ANALYSIS AND	ann madail (ce ce c				
=1.01325x10 ⁵ Nm ⁻²	=4.184 J	=1.602 189x10 ⁻¹⁹ J	=0.124x10 ⁻³ eV	Planck constant	h	6.626 18x10 ⁻³⁴ Js			
=760torr		=96.485 kJ/mol	$=1.9864 \times 10^{-23} \text{J}$, h				
=1 bar		= 8065.5 cm ⁻¹			$\hbar = \frac{h}{2\pi}$	1.054 59x10 ⁻³⁴ Js			
				Avogadro constant	L or N _{av}	6.022 14x10 ²³ mol ⁻¹			
SI-units:			nywata(ata(a)a(a)a(a)a(a)a(a)a(a(a)a(a)a(a)	Atomis mass unit	u	1.660 54x10 ⁻²⁷ kg			
1 L = 1000 ml = 100	$00cm^3 = 1 d$	lm ³		Electron mass	m _e	9.109 39x10 ⁻³¹ kg			
1 dm = 0.1 m			na a collista de socia como e processo de describos de socia de socia de socia de socia de socia de socia de s	Proton mass	m _p	1.672 62x10 ⁻²⁷ kg			
1 cal (thermochemic			one on the substitution of two responses and in this statement in a very manifest of all all all all all all a	Neutron mass	m _n	1.674 93x10 ⁻²⁷ kg			
dipole moment: 1 D				Vacuum permittivity	$\varepsilon_{o} = \mu_{o}^{-1} c^{-2}$	8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹			
force: 1N=1J m ⁻¹ = 1	kgms ⁻² =10	⁵ dyne pressure: <i>1Pa</i>	=1Nm ⁻² =1Jm ⁻³	Vacuum permeability	μο	$4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$			
1J = 1 Nm power: $1W = 1J s^{-1}$	negamente en emana esta mario de en esta de esta de el cidad de debido de el cidad de el cidad de el cidad de e	potential: 1	V=1 J C ⁻¹	Bohr magneton	$\mu_B = \frac{e\hbar}{2m_e}$	9.274 02x10 ⁻²⁴ JT ⁻¹			
maghetic flux: 1T=1	Vsm ⁻² =1JC	current: 1A	=1Cs ⁻¹	Nuclear magneton	$\mu_{N} = \frac{e\hbar}{2m_{p}}$	5.05079x10 ⁻²⁷ JT ⁻¹			
Profixes:				Gravitational constant	G	6.67259x10 ⁻¹¹ Nm ² kg ⁻²			
p h m	m	c d k	M G	Gravitational	g	9.80665 ms ⁻²			
pled hano micr	o milli c	enti deci kilo	mega giga	acceleration	The first production of the state of the sta				
10 13 10-9 10-6	10 ⁻³ 1	$10^{-2} 10^{-1} 10^{3}$	10 ⁶ 10 ⁹	Bohr radius	a _o	5.291 77x10 ⁻¹¹ m			

THE PERIODIC TABLE OF ELEMENTS

Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA	IIIB	IVB	VB	VIB	VIIB	***************************************	VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
Period 1	1 H 1.008		NON-METALS													2 He 4.003 ^e		
2	3 Li 6.94	4 Be 9.01			1				METAL	LOIDS	←		5 B 10.81	6 C 12.01	7 N 14.01	8 O . 16.00	*9 * F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31			·	→ M	IETALS					,	13 Al 26.9	14 Si 28.09	15 P 30.97	16 S 32.06	17 * Cl 35.45	18 Ar -39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.01	25 Mn 54.9	26 Fe 55.85	27 Co 58.71	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.7	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.91	36 Kr 83:80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 91.22	42 Mo 95.94	43 Tc 98.9	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	71 Lu 174.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 196.9	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 208.9	84 Po 210	85 At 210	86 Rn 222
7	87 Fr 223	88 Ra 226.0	103 Lr 257	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une		*							

	57	58	59	60	61	62	63	64	65	66	67	68	69	-70
Lanthanides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
Actinides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

SOURCE: International Union of Pure and Applied Chemistry, I mills, ed., Quantities, Units, and symbols in Physical Chemistry, Blackwell Scientific publications, Boston, 1988, pp 86-98.