UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS

2015/2016

TITLE OF PAPER:

INTRODUCTORY CHEMISTRY

COURSE NUMBER:

CHE151

FROM SECTION B.

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE TWO SECTIONS: SECTION A AND SECTION B. ANSWER
ALL THE QUESTIONS IN SECTION A AND ANY THREE QUESTIONS

SECTION A IS WORTH 25 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE <u>ANSWER SHEET</u> FOR SECTION A IS ATTACHED TO THE QUESTION PAPER. DETATCH THE ANSWER SHEET FROM THE QUESTION PAPER AND <u>FILL IN ALL THE INFORMATION REQUIRED</u>

For Section A, <u>record the letter</u> corresponding to the correct answer <u>on the Section A answer sheet</u> which is attached

AT THE END OF THE EXAM, BEFORE YOU LEAVE, <u>PLACE THE</u>

ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET

CONTAINING YOUR ANSWERS TO SECTION B. <u>DO NOT FORGET</u>

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A: ANSWER ALL THE QUESTIONS

- 1. Isopropyl alcohol, commonly known as rubbing alcohol, boils at 82.4°C. What is the boiling point in kelvins?
 - A. 387.6 K
 - B. 355.6 K
 - C. 323.6 K
 - D. 190.8 K
 - E. -190.8 K
- 2. Select the answer with the correct number of decimal places for the following sum:
 - 13.914 cm 243.1 cm + 12.00460 cm =
 - A. 269.01860 cm
 - B. 269.0186 cm
 - C. 269.019 cm
 - D. 269.02 cm
 - E. 269.0 cm
- 3. Which of the following correctly expresses 0.000007913 g in scientific notation?
 - A. 7.913×10^6 g
 - B. 7.913×10^{5} g

 - C. 7.913×10^{-5} g D. 7.913×10^{-6} g E. 7.913×10^{-9} g

4. Silicon, which makes up about 25% of Earth's crust by mass, is used widely in the modern electronics industry. It has three naturally occurring isotopes, ²⁸Si, ²⁹Si, and ³⁰Si. Calculate the atomic mass of silicon.

Isotope ²⁸ Si	Isotopic Mass (amu)	Abundance %
²⁸ Si	27.976927	92.23
²⁹ Si	28.976495	4.67
³⁰ Si	29.973770	3.10

- A. 29.2252 amu
- B. 28.9757 amu
- c. 28.7260 amu
- D. 28.0855 amu
- E. 27.9801 amu
- 5. Which of the following compounds is covalent?
 - A. CaCl₂
 - B. MgO
 - C. Al_2O_3
 - D. Cs_2S
 - E. PCl₃
- 6. The compound, BaO, absorbs water and carbon dioxide readily and is used to dry gases and organic solvents. What is its name?
 - A. barium oxide
 - B. barium(II) oxide
 - C. barium monoxide
 - D. baric oxide
 - E. barium peroxide
- 7. What is the formula for magnesium sulfide?
 - A. MgS
 - B. MgS₂
 - C. Mg₂S
 - D. Mg_2S_3
 - E. MgSO₄

- 8. Sulfur trioxide can react with atmospheric water vapor to form sulfuric acid that falls as acid rain. Calculate the mass in grams of 3.65×10^{20} molecules of SO₃.
 - A. 6.06×10^{-4} g
 - B. 2.91×10^{-2} g
 - C. 4.85×10^{-2} g
 - D. 20.6 g
 - E. 1650 g
- 9. A compound containing chromium and silicon contains 73.52 mass percent chromium. Determine its empirical formula.
 - A. CrSi₃
 - B. Cr₂Si₃
 - C. Cr₃Si
 - D. Cr₃Si₂
 - E. Cr₂S
- 10. Balance the following equation for the combustion of benzene:

$$C_6H_6(l) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$$

- A. $C_6H_6(I) + 9O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$
- B. $C_6H_6(I) + 9O_2(g) \rightarrow 6H_2O(g) + 6CO_2(g)$
- C. $2C_6H_6(l) + 15O_2(g) \rightarrow 6H_2O(g) + 12CO_2(g)$
- D. $C_6H_6(I) + 15O_2(g) \rightarrow 3H_2O(g) + 6CO_2(g)$
- E. $2C_6H_6(l) + 9O_2(g) \rightarrow 6H_2O(g) + 12CO_2(g)$
- 11. Aluminum reacts with oxygen to produce aluminum oxide which can be used as an adsorbent, desiccant or catalyst for organic reactions.

$$4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)$$

A mixture of 82.49 g of aluminum ($\mathcal{M} = 26.98$ g/mol) and 117.65 g of oxygen ($\mathcal{M} = 32.00$ g/mol) is allowed to react. Identify the limiting reactant and determine the mass of the excess reactant present in the vessel when the reaction is complete.

- A. Oxygen is the limiting reactant; 19.81 g of aluminum remain.
- B. Oxygen is the limiting reactant; 35.16 g of aluminum remain.
- C. Aluminum is the limiting reactant; 16.70 g of oxygen remain.
- D. Aluminum is the limiting reactant; 35.16 g of oxygen remain.
- E. Aluminum is the limiting reactant; 44.24 g of oxygen remain.

12. In the following reaction, what ions, if any, are spectator ions?

$$Pb(NO_3)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2NaNO_3(aq)$$

- A. $Pb^{2+}(aq)$, $Cl^{-}(aq)$
- B. $Na^{+}(aq)$, $NO_{3}(aq)$
- C. $Pb^{2+}(aq)$, $NO_3(aq)$
- D. $Na^{+}(aq)$, $Cl^{-}(aq)$
- E. There are no spectator ions
- 13. Select the correct name and chemical formula for the precipitate that forms when the following reactants are mixed.

$$CuCl_2(aq) + Na_2CO_3(aq) \rightarrow$$

- A. copper(I) carbonate, Cu₂CO₃
- B. copper(II) carbonate, Cu₂CO₃
- C. copper(I) carbonate, CuCO₃
- D. copper(II) carbonate, CuCO₃
- E. sodium chloride, NaCl
- 14. Select the net ionic equation for the reaction between lithium hydroxide and hydrobromic acid.

$$\text{LiOH}(aq) + \text{HBr}(aq) \rightarrow \text{H}_2\text{O}(l) + \text{LiBr}(aq)$$

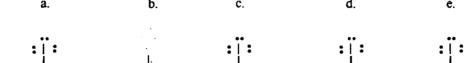
- A. $LiOH(aq) \rightarrow Li^{+}(aq) + OH(aq)$
- B. $HBr(aq) \rightarrow H^{\dagger}(aq) + Br^{\dagger}(aq)$
- C. $H^{+}(aq) + OH(aq) \rightarrow H_2O(l)$
- D. $Li^{+}(aq) + Br^{-}(aq) \rightarrow LiBr(aq)$
- E. $\operatorname{Li}^{+}(aq) + \operatorname{OH}^{-}(aq) + \operatorname{H}^{+}(aq) + \operatorname{Br}^{-}(aq) \rightarrow \operatorname{H}_{2}\operatorname{O}(l) + \operatorname{LiBr}(aq)$
- 15. A standard solution of 0.243 M NaOH was used to determine the concentration of a hydrochloric acid solution. If 46.33 mL of NaOH is needed to neutralize 10.00 mL of the acid, what is the molar concentration of the acid?
 - A. 0.0524 M
 - B. 0.888 M
 - C. 1.13 M
 - D. 2.26 M
 - E. 2.43 M

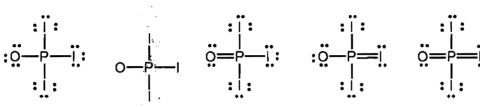
- 16. Select the arrangement of electromagnetic radiation which starts with the lowest wavelength and increases to greatest wavelength.
 - A. radio, infrared, ultraviolet, gamma rays
 - B. radio, ultraviolet, infrared, gamma rays
 - C. gamma rays, radio, ultraviolet, infrared
 - D. gamma rays, infrared, radio, ultraviolet
 - E. gamma rays, ultraviolet, infrared, radio
- 17. According to the Bohr theory of the hydrogen atom, the minimum energy (in J) needed to ionize a hydrogen atom from the n = 2 state is
 - A. 2.18×10^{-18} J
 - B. $1.64 \times 10^{-18} \,\mathrm{J}$
 - C. $5.45 \times 10^{-19} \text{ J}$
 - D. $3.03 \times 10^{-19} \text{ J}$
 - E. None of these choices is correct.
- 18. Which of the following is a correct set of quantum numbers for an electron in a 3d orbital?
 - A. n = 3, l = 0, $m_l = -1$
 - B. n = 3, l = 1, $m_l = +3$
 - C. n = 3, l = 2, $m_l = 3$
 - D. n = 3, l = 3, $m_l = +2$
 - E. n = 3, l = 2, $m_l = -2$
- 19. In the quantum mechanical treatment of the hydrogen atom, which one of the following combinations of quantum numbers is not allowed?

	n	I		m_{i}
a.	3	0	,	0
b.	3	1	•	-1
C.	3	2		2
d.	3	2		-1
e.	3	3	·	2

- A. a
- B. b
- C. c
- D. d
- E. e

		Li No	
		Ne Rb	
		Sr	
		Xe	δ.
22.	Sel	lect the eleme	ent with the least metallic character.
	B. C. D.	Sn Sr Tl Ge Ga	
23. A. B. C. D.		Select the co CaCl CaCl ₂ Ca ₂ Cl Ca ₂ Cl ₂ CaCl ₃	orrect formula for a compound formed from calcium and chlorine.


20. The electronic structure $1s^22s^22p^63s^23p^64s^23d^8$ refers to the ground state of


A. Kr B. Ni

C. Fe D. Pd

E. None of these choices is correct.

24. Phosphoryl iodide is used in the preparation of organophosphorus derivatives and phosphate esters. Select the Lewis structure for POI₃ which minimizes formal charges.

- A. a
- B. b
- C. c
- D. d
- E. e
- 25. In which one of the following species is the central atom (the first atom in the formula) likely to violate the octet rule?
 - A. BF₄
 - B. NO₅
 - C. SiCl₄
 - D. NH₃
 - E. CH₂Cl₂

SECTION B: ANSWER ANY THREE QUESTIONS

Write the following numbers in scientific notation:

Q.1.

		i)	281.0 ii) 0.0	00380	iii) 4279.8	iv) 5	8 200.9	[2]		
	b)		the following needed.	number	s in standard n	otation.	Use a termina	al decimal point		
		i)	5.55×10^3	ii)	1.0070x10 ⁴	iii)	8.85x10 ⁻⁷	iv) 3.004x10 ⁻⁴		
	c)	Argo	n has three nati	urally oc	curring isotop	es, ³⁶ Ar	38 Ar and 40 A	[2] r.		
		i) ii)	a contract of		mber of each? neutrons and e	electrons	s are present in	each?		
	d)		monatomic io s symbol of the		_					
		i)	Iodine;	ii)	Calcium;	iii)	selenium	[9]		
	e)		the following them:	anions a	and give the na	ames an	d formulas of	the acids derived		
		i)	Br ii)	ClO ₃	iii) CN	iv)	SO ₄ ² -	[6]		
Q.2.	(a)	suspe comb	cleaning solve cted to be a ca- ustion analysis cular formula c	ncer-cau s, 0.451	sing agent. Wag of CO ₂ and 0	hen a 0.	250-g sample	was studied by ed. Find the		
	(b)	Thermite is a mixture of iron(III) oxide and aluminium powders that was once used to weld railroad tracks. It undergoes a spectacular reaction to yield solid aluminum oxide and molten iron.								
			$Fe_2O_3(s) + 2$	Al(s) →	$Al_2O_3(s) + 2F$	Fe(l)				
		(i) (ii)	How many a	*			g of aluminium very 1.00 g of	nreact? aluminium oxide		
			formed?					[9]		

Q.3. How many grams of solid aluminium sulphide can be prepared by the reaction of (a) 10.0 g of aluminium and 15.0 g of sulphur? How much of the nonlimitting reactant is in excess? The balanced reaction is as follows:

$$2Al(s) + 3S(s) \rightarrow Al_2S_3(s)$$

[8]

Marble (calcium carbonate) reacts with hydrochloric acid solution to form (b) calcium chloride solution, water, and carbon dioxide. What is the percentage yield of carbon dioxide if 3.5 g of the gas is collected when 10.0 g of marble reacts with excess acid? The reaction equation is,

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

[5]

- To prepare a fertilizer, a technician dilutes a stock solution of sulphuric acid by (c) adding 25.0 m³ of 7.50 M acid to enough water to make 500.0 mL of a dilute solution. What is the mass (in g) of sulphuric acid per milliliter of the diluted solution? [5]
- (d) Consider a 1.5 M aqueous solution of lead(II) acetate. When 267 mL reacts with 125 mL of 3.40 M sodium chloride, how many grams of solid lead(II) chloride can form? The required reaction equation is,

$$Pb(CH_3COO)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2CH_3COONa(aq)$$

[7]

- Q.4. (a) What values of the angular momentum (1) and magnetic (m₁) quantum numbers are allowed for a principal quantum number (n) of 4? How many orbitals exist for n=4?[10]
- Q.4. (c) Rank the ions in each set in order of increasing size:
 - Se², Rb⁺, Br (i)
 - (ii)
 - (iii)
 - O²-, F, N³-T²-, Cs⁺, I Sr²⁺, Cs⁺, Ba²⁺ (iv)

[4]

- Q.4. (d) Give condensed electron configurations, and partial orbital diagrams showing valence electrons for the following species:
 - (iii) (i)

- Q.4. (e) For each of the following, give the Lewis structure and the hybridization of the central atom:
 - (i) SF₄
- (ii) XeF₂

[6]

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1,008 H 1											4.003 He						
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.180 Ne 10
3	22.990 Na 11	24.305 Mg 12		TRANSITION ELEMENTS 26.982									39.948 Ar 18					
4	39.0983 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 AS 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta 73	183.85 W	186.207 Re 75	190.2 Os 76	192.22 Ir 77 :	195.08 Pt 78	196.967 Au 79	200.59 Hg 80	204.383 T1 81	207.2 Po 82,	208.980 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra 88	(227) ** A C 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	Uns 107	Uno 108	⁽²⁶⁶⁾ Une ¹⁰⁹		·							

 Lanthanide s 	eries
----------------------------------	-------

** Actinide series

140.115	140.908	144.24	Pm 61	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
Ce	Pr	Nd		Sm	Eu	Gd	Tb	Dy	Ho	Er.	Tm	Yb	Lu
58	59	60		62	63	64	65	66	67	68	69	70	71
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of $^{12}\text{C} = \text{exactly } 12$. () indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills. ed., *Quantities*, *Units, and Symbols in Physical Chemistry*, Blackwell Scientific Publications, Boston, 1988, . pp 86-98.

Fundamental Physical Constants (six significant figures)

" had so had " .

Avogadro's number	$N_{\rm A} = 6.02214 \times 10^{23} / \text{mol}$
atomic mass unit	$amu = 1.66054 \times 10^{-27} \text{ kg}$
charge of the electron (or proton)	
Faraday constant	$F = 9.64853 \times 10^4 \text{ C/mol}$
mass of the electron	$m_e = 9.10939 \times 10^{-31} \text{ kg}$
mass of the neutron	$m_{\rm n} = 1.67493 \times 10^{-27} \rm kg$
mass of the proton	$m_{\rm p} = 1.67262 \times 10^{-27} \rm kg$
Planck's constant	$h = 6.62607 \times 10^{-34} \text{J} \cdot \text{s}$
speed of light in a vacuum	$c = 2.99792 \times 10^8 \mathrm{m/s}$
standard acceleration of gravity	$g = 9.80665 \text{ m/s}^2$
universal gas constant	R = 8.31447 J/(mol K)
	= $8.20578 \times 10^{-2} (atm \cdot L)/(mol \cdot K)$

Rydberg constant = $1.097 \times 10^7 \text{ m}^{-1}$

SI Unit Prefixes

				:			-	
р	n	μ	m -	C	d	k	M	G :
pico-	nano-	micro-	milli-	centi-	deci-	kilo-	mega-	giga- :
10-12	10-9	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10 ⁶	109
	rations in the major operation of							

Conversions and Relationships

Length

SI unit: meter, m

1 km = 1000 m = 0.62 mile (mi) 1 inch (in) = 2.54 cm 1 m = 1.094 yards (yd)

1 m = 1.094 yards (yd) 1 pm = 10^{-12} m = 0.01 Å

Mass

SI unit: kilogram, kg

1 kg = 10^3 g = 2.205 lb 1 metric ton (t) = 10^3 kg

Volume

SI unit: cubic meter, m³

 $1 \text{ dm}^3 = 10^{-3} \text{ m}^3$ = 1 liter (L) = 1.057 quarts (qt) $1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ m}^3 = 35.3 \text{ ft}^3$

Energy

SI unit: joule, J

1 J = 1 kg·m²/s² = 1 coulomb·volt (1 C·V) 1 cal = 4.184 J 1 eV = 1.602×10^{-19} J

Temperature SI unit: kelvin, K

0 K = -273.15°C mp of H₂O = 0°C (273.15 K) bp of H₂O = 100°C (373.15 K) T(K) = T(°C) + 273.15 $T(°C) = [T(°F) - 32]_{\frac{5}{9}}^{\frac{5}{2}}$ $T(°F) = \frac{9}{5}T(°C) + 32$

Pressure

SI unit: pascal, Pa

1 Pa = 1 N/m² = 1 kg/m·s² 1 atm = 1.01325×10⁵ Pa = 760 torr 1 bar = 1×10⁵ Pa

Math relationships

 $\pi = 3.1416$ volume of sphere $= \frac{4}{3}\pi r^3$ volume of cylinder $= \pi r^2 h$

CHE151 FINAL EXAM ANSWER SHEET FOR SECTION A

Student ID #	Degree Program (BS	c, BEd, etc):
Date:		
Question No.	Letter corresponding to the correct answer	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		